Detection of Breast Cancer Cells Using Immunomagnetic Beads and Reverse Transcriptase Polymerase Chain Reaction

  • Scott Luke
  • Karen L. Kaul
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 49)


Molecular methods permit the detection of cells too few in number to be detected by light microscopy, immunohistochemistry, or flow cytometry (1, 2, 3, 4, 5). Numerous investigators are therefore developing sensitive and specific reverse transcriptase polymerase chain reaction (RT-PCR) assays for tumor cell detection. The detection of small numbers of tumor cells in blood, lymph node, and stem cell harvests may have a significant impact on our understanding of the spread of breast cancer, and eventually may impact the management of breast cancer patients as well.


Reverse Transcriptase Polymerase Chain Reaction Immunomagnetic Bead Tumor Cell Detection Stem Cell Harvest Reverse Transcriptase Polymerase Chain Reaction Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brown, D. C., Purushotham, A. D., Birnie, G. D., and George, W. D. (1995) Detection of intraoperative tumor cell dissemination in patients with breast can-cer by use of reverse transcription and polymerase chain reaction. Surgery 117, 96–101.CrossRefGoogle Scholar
  2. 2.
    Burchill, S. A., Bradbury, M. F., Pittman, K., Southgate, J., Smith, B., and Selby, P. (1995) Detection of epithelial cancer cells in peripheral blood by reverse tran-scriptase polymerase chain reaction. Br. J. Cancer 71, 278–281.PubMedCrossRefGoogle Scholar
  3. 3.
    Choy, A. and McCulloch, P. (1996) Induction of tumour cell shedding into effluent venous blood breast cancer surgery. Br. J. Cancer 73, 79–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Datta, Y. H., Adams, P. T., Drobyski, W. R., Ethier, S. P., Terry, V. H., and Roth, M. S. (1994) Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction. J. Clin. Oncol. 12(3), 475–482.PubMedGoogle Scholar
  5. 5.
    Gross, H. J., Verwer, B., Houck, D., Hoffman, R. A., and Recktenwald, D. (1995) Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 107. Proc. Natl. Acad. Sci. USA 92, 537–541.PubMedCrossRefGoogle Scholar
  6. 6.
    Savtchenko, E. S., Schiff, T. A., Jiang, C. K., Freedburg, I. M., and Blumenburg, M. (1988) Embryonic expression of the human 40-kD keratin: evidence from a processed pseudogene sequence. Am. J. Hum. Genet. 43, 630–637.PubMedGoogle Scholar
  7. 7.
    Traweek, S. T., Liu, J., and Battifora, H. (1993) Keratin gene expression in non-epithelial tissues. Am. J. Pathol. 142, 1111–1118.PubMedGoogle Scholar
  8. 8.
    Mazoujian, G., Bodian, C., Haagensen, D. E., and Haagensen, C. D. (1989) Expression of GCDFP-15 in breast carcinomas. Cancer 63, 2156–2161.PubMedCrossRefGoogle Scholar
  9. 9.
    Mazoujian, G., Pinkus, G. S., Davis, S., and Haagensen, D. E. (1983) Immunohis-tochemistry of a gross cystic disease fluid protein (GCDFP-15) of the breast. Am. J. Pathol. 110(2), 105–112.PubMedGoogle Scholar
  10. 10.
    Watson, M. A. and Fleming, T. P. (1996) Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. Cancer Res. 56, 860–865.PubMedGoogle Scholar
  11. 11.
    Luke, S. and Kaul, K. (1998) Detection of breast cancer cells in blood using immunomagnetic bead selection and reverse transcription-polymerase chain reaction. Mol. Diagn. 3(3), 149–155.PubMedCrossRefGoogle Scholar
  12. 12.
    Gomm, J. J., Browne, P. J., Coope, R. C., Liu, Q. Y., Bulawela, L., and Coombes, R. C. (1995) Isolation of pure populations of epithelial and myoepithelial cells from the normal human mammary gland using immunomagnetic separation with Dynabeads. Analyt. Biochem. 226, 91–99.PubMedCrossRefGoogle Scholar
  13. 13.
    Yaremko, M. L., Kelemen, P. R., Kutza, C., Barker, D., and Westbrook, C. A. (1996) Immunomagnetic separation can enrich fixed solid tumors for epithelial cells. Am. J. Pathol. 148, 95–104.PubMedGoogle Scholar
  14. 14.
    Latza, U., et al. (1990) Ber-EP4; new monoclonal Ab which distinguishes epithe-lia from mesothelia. J. Clin. Pathol. 43, 213–219.PubMedCrossRefGoogle Scholar
  15. 15.
    Eaton, M. C., Hardingham, J. E., Kotasek, D., and Dobrovic, D. (1997) Immunobead RT-PCR: a sensitive method for detection of circulating tumor cells. Biotechniques 21, 100–105.Google Scholar
  16. 16.
    Krafft, A. E., Duncan, B. W., Bijwaard, K. E., Taubenberger, J. K., and Lichy, J. H. (1997) Optimization of the isolation and amplification of RNA from formalin-embedded tissue: the Armed Forces Institute of Pathology experience and literature review. Mol. Diagn. 2(3), 217–230.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Scott Luke
    • 1
  • Karen L. Kaul
    • 1
  1. 1.Department of PathologyEvaastora HospitalEvanston

Personalised recommendations