Skip to main content

In Vivo Skin-Targeted Gene Delivery by Pulsed Electric Fields

  • Protocol

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 37))

Abstract

The skin is an especially attractive target for gene therapy. In particular, the ability to target genes to the epidermis of the skin could be used to correct skin-specific disorders as well as for the production of proteins secreted into the skin and the circulatory system to correct certain systemic diseases (13). For example, genes expressing cytokines, interferons, or other biologically active molecules could be used to treat skin tumors or other lesions. In addition, keratinocytes and fibroblasts in the skin may secrete protein factors to treat systemic conditions such as hemophilia (4). In other words, this technology for skin-targeted gene therapy would be useful not only for treating local indications, but also for treating systemic diseases by exploiting the secretory capability of the epidermal keratinocytes (5). It is reasonable to believe that skin-targeted gene delivery has great potential and is biologically sound as is indicated by the substantial in vitro and ex vivo data (6,7). However, despite the clear potential in using skin as a target for gene therapy, the major technical problem of an in vivo method of gene delivery remains mostly unresolved. Since the stratum corneum (SC) acts as a significant physical barrier against molecular transfer into the skin, the technical problem of how to deliver molecules as large as genes through this layer still persists. This chapter describes an in vivo method using pulsed electric fields to deliver naked reporter genes into the skin as “proof of principle.”

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hoeben, R. C., Fallaux, F. J., Van Tilburg, N. H., Cramer, S. J., Van Ormondt, H., Briet, E., and Van Der Eb, A. J. (1993) Toward gene therapy for hemophilia A: Long-term persistence of factor VIII-secreting fibroblasts after transplantation into immunodeficient mice. Hum. Gene Ther. 4, 179–186.

    Article  PubMed  CAS  Google Scholar 

  2. Lu, B., Federoff, H. J., Wang, Y., Goldsmith, L. A., and Scott, G. (1997) Topical application of viral vectors for epidermal gene transfer. J. Invest. Dermatol. 108, 803–808.

    Article  PubMed  CAS  Google Scholar 

  3. Medalie, D. A., Eming, S. A., Tompkins, R. G., Yarmush, M. L., Krueger, G. G., and Morgan, J. R. (1996) Evaluation of human skin reconstituted from composite grafts of cultured keratinocytes and human acellular dermis transplanted to athymic mice. J. Invest. Dermatol. 107, 121–127.

    Article  PubMed  CAS  Google Scholar 

  4. Brinkhous, K. M. (1992) Gene transfer in the hemophilias: Retrospect and prospect. Thromb. Res. 67, 329–338.

    Article  PubMed  CAS  Google Scholar 

  5. Gerrard, A. J., Hudson, D. L., Brownlee, G. G., and Watt, F. M. (1993) Towards gene therapy for haemophilia B using primary human keratinocytes. Nat. Genet. 3, 180–183.

    Article  PubMed  CAS  Google Scholar 

  6. Fenjves, E. S., Schwartz, P. M., Blaese, R. M., and Taichman, L. B. (1997) Keratinocyte gene therapy for adenosine deaminase deficiency: A model approach for inherited metabolic disorders. Hum. Gene Therapy 8, 911–917.

    Article  CAS  Google Scholar 

  7. Page, S. M. and Brownlee, G. G. (1997) Differentiation-specific enhancer activity in transduced keratinocytes: A model for epidermal gene therapy. J. Invest. Dermatol. 109, 139–145.

    Article  PubMed  CAS  Google Scholar 

  8. Greenhalgh, D. A., Rothnagel, J. A., and Roop, D. R. (1994) Epidermis: An attractive target tissue for gene therapy. J. Invest. Dermatol. 103, 63S–69S.

    Article  PubMed  CAS  Google Scholar 

  9. Krueger, G. G., Morgan, J. R., Jorgensen, C. M., Schmidt, L., Li, H. L., Kwan, M. K., Boyce, S. T., Wiley, H. S., Kaplan, J., and Petersen, M. J. (1994) Genetically modified skin to treat disease: Potential and limitations. J. Invest. Dermatol. 103, 76S–84S.

    Article  PubMed  CAS  Google Scholar 

  10. Meng, X., Sawamura, D., Tamai, K., Hanada, K., Ishida, H., and Hashimoto, I. (1998) Keratinocyte gene therapy for systemic diseases. J. Clin. Invest. 101, 1462–1467.

    Article  PubMed  CAS  Google Scholar 

  11. Vogel, J. C. (1993) Keratinocyte gene therapy. Arch Dermatol. 129, 1478–1483.

    Article  PubMed  CAS  Google Scholar 

  12. Choate, K. A. and Khavari, P. A. (1997) Direct cutaneous gene delivery in a human genetic skin disease. Hum. Gene Ther. 8, 1659–1665.

    Article  PubMed  CAS  Google Scholar 

  13. Alexander, M. Y., Bidichandani, S. I., Cousins, F. M., Robinson, C. J. M., Duffle, E., and Akhurst, R. J. (1995) Circulating human factor IX produced in keratin-promoter transgenic mice: a feasibility study for gene therapy of haemophilia B. Hum. Mol. Gen. 4, 993–999.

    Article  PubMed  CAS  Google Scholar 

  14. Carroll, J. M., Alberts, K. M., Garlick, J. A., Harrington, R., and Taichman, L. B. (1993) Tissue-and stratum-specific expression of the human involucrin promoter in transgenic mice. Proc. Natl. Acad. Sci. USA 90, 10,270–10,274.

    Article  PubMed  CAS  Google Scholar 

  15. Carroll, J. M. and Taichman, L. B. (1992) Characterization of the human involucrin promoter using a transient β-galactosidase assay. J. Cell Sci. 103, 925–930.

    PubMed  CAS  Google Scholar 

  16. Wang, X., Zinkel, S., Polonsky, K., and Fuchs, E. (1997) Transgenic studies with a keratin promoter-driven growth hormone transgene: Prospects for gene therapy. Proc. Natl. Acad. Sci. USA 94, 219–226.

    Article  PubMed  CAS  Google Scholar 

  17. Boyce, S. T. (1994) Epidermis as a secretory tissue. J. Invest. Dermatol. 102, 8–10.

    Article  PubMed  CAS  Google Scholar 

  18. Fenjves, E. S., Smith, J., Zaradic, S., and Taichman, L. B. (1994) Systemic delivery of secreted protein by grafts of epidermal keratinocytes: Prospects for keratinocyte gene therapy. Hum. Gene Ther. 5, 1241–1248.

    Article  PubMed  CAS  Google Scholar 

  19. Fakharzadeh, S. S., Sarkar, R., and Kazazian, H. H. Jr. (1997) Correction of factor VIII deficiency in a mouse model of hemophilia A through targeting factor VIII transgene expression to skin. Proc. Am. Soc. Hematol. 39, 569a.

    Google Scholar 

  20. J. Hadgraft and Guy, R. H. (1989) Drugs and the Pharmaceutical Sciences. Marcel Dekker, New York.

    Google Scholar 

  21. Kost, J., Levy, D., and Langer, R. (1989) Ultrasound as a transdermal enhancer. Percutaneous Absorption: Mechanisms-Methodology-Drug Delivery, 2nd ed. (Bronaugh, R. L. and Maibach, H. I., eds.), pp. 595–601.

    Google Scholar 

  22. Banga, A. K. and Chien, Y. W. (1988) Iontophoretic delivery of drugs: fundamentals, developments and biomedical applications. J. Controlled Release 7, 1–24.

    Article  CAS  Google Scholar 

  23. Chien, Y. W. and Banga, A. K. (1989) Iontophoretic (transdermal) delivery of drugs: Overview of historical development. J. Pharm. Sci. 78, 353–354.

    Article  PubMed  CAS  Google Scholar 

  24. Prausnitz, M. R., Bose, V. G., Langer, R., and Weaver, J. C. (1993) Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA 90, 10,504–10,508.

    Article  PubMed  CAS  Google Scholar 

  25. Hofmann, G. A., Rustrum, W. V., and Suder, K. S. (1995) Electro-incorporation of microcarriers as a method for the transdermal delivery of large molecules. Bioelectrochem. Bioenerg. 38, 209–222.

    Article  CAS  Google Scholar 

  26. Hofmann, G. A., Zhang, L., Bremer, U., and Spencer, T. (1996) Investigation of electroincorporation phenomena. [Abstract]. Proc. 13th Int. Symp. Bioecectrochem. Bioenerg. January 7–12, Israel, pp. 132.

    Google Scholar 

  27. Muramatsu, T., Nakamura, A., and Park, H-M. (1997) In vivo electroporation: A powerful and convenient means of nonviral gene transfer to tissues of living ani-mals. [Review]. Int. J. Mol. Med. 1, 55–62.

    Google Scholar 

  28. Neumann E., Sowers A. E., and Jordan C. A. (1989) Electroporation and Electrofusion in Cell Biology. Plenum, New York.

    Google Scholar 

  29. Nickoloff, J. A. (1995) Electroporation Protocols for Microorganisms; Animal Cell Electroporation and Electrofusion Protocols; Plant Cell Electroporation and Electrofusion Protocols; Vols. 47, 48, and 55 in Methods in Molecular Biology, Humana Press, Totowa, NJ.

    Google Scholar 

  30. Weaver, J. C. (1993) Electroporation: A general phenomenon for manipulating cells and tissues. J. Cell. Biochem. 51, 426–435.

    PubMed  CAS  Google Scholar 

  31. Hofmann, G. A., Dev, S. B., and Nanda, G. S. (1996) Electrochemotherapy: Transition from laboratory to the clinic. IEEE Eng. Med. Biol. Nov./Dec, 124–132.

    Google Scholar 

  32. Prausnitz, M. R., Bose, V. G., Langer, R., and Weaver, J. C. (1993) Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA 90, 10,504–10,508.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, L., Li, L., Hofmann, G. A., and Hoffman R. M. (1996) Depth-targeted efficient gene delivery and expression in the skin by pulsed electric fields: An approach to gene therapy of skin aging and other diseases. Biochem. Biophys. Res. Commun. 220, 633–636.

    Article  PubMed  CAS  Google Scholar 

  34. Pliquett, U., Langer, R., and Weaver, J. C. (1995) Changes in the passive electrical properties of human stratum corneum due to electroporation. Biochim. Biophys. Acta 1239, 111–121.

    Article  PubMed  CAS  Google Scholar 

  35. Prausnitz, M. R. (1996) The effects of electric current applied to skin: A review for transdermal drug delivery. Adv. Drug Deliv. Rev. 18, 395–425.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Zhang, L. (2000). In Vivo Skin-Targeted Gene Delivery by Pulsed Electric Fields. In: Jaroszeski, M.J., Heller, R., Gilbert, R. (eds) Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery. Methods in Molecular Medicine, vol 37. Humana Press. https://doi.org/10.1385/1-59259-080-2:473

Download citation

  • DOI: https://doi.org/10.1385/1-59259-080-2:473

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-606-2

  • Online ISBN: 978-1-59259-080-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics