Skip to main content

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 37))

Abstract

Electroporation generally refers to the technique of permeabilizing cell membranes by applying a short and intense electric pulse across a cell, such that the barrier function of the membrane is instantaneously compromised. During such time, genetic materials may travel across the membrane. For a successful gene transfer process, the barrier function of the cell membrane is rapidly restored, and the cell survives. The electrotransfection process thus comprises two steps. The first step is electroporation, which is governed by the electrical properties of the cell and the suspension medium. The controlling parameters are mainly electrical. The second step is recovery, which must take into account the biological characteristics of the cells. We consider these two steps in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neumann, E. and Rosenheck, K. (1972) Permeability changes induced by electric impulses in vesicular membranes,J. Membr. Biol. 10, 279–290.

    Article  PubMed  CAS  Google Scholar 

  2. Zimmermann, U., Pilwat, G., and Riemann, F. (1974) Dielectric breakdown of cell membranes. Biophys. J. 14, 881–899.

    Article  PubMed  CAS  Google Scholar 

  3. Kinosita, K. and Tsong, T. Y. (1975) Formation and reealing of pores of controlled sizes in human erythrocyte membranes. Nature 268, 438–441.

    Article  Google Scholar 

  4. Zimmermann, U., Riemann, F., and Pilwat, G. (1976) Enzyme loading of electrically homogeneous human red blood cell ghosts prepared by dielectric breakdown. Biochim. Biophys. Acta 436, 460–474.

    Article  PubMed  CAS  Google Scholar 

  5. Vienken, J., Jeltsch, E., and Zimmermann, U. (1978) Penetration and entrapment of large particles in erythrocytes by electrical breakdown techniques. Cytobiologie 17, 182–196.

    PubMed  CAS  Google Scholar 

  6. Auer, D., Brandner, G., and Bodemer, W. (1976) Dielectric breakdown of the red blood cell membrane and uptake of SV40 DNA and mammalian RNA. Naturwissenschaften 63, 391–393.

    Article  PubMed  CAS  Google Scholar 

  7. Wong, T. K. and Neumann, E. (1982) Electric field mediated gene transfer. Biochem. Biophys. Res. Commun. 107, 584–587.

    Article  PubMed  CAS  Google Scholar 

  8. Xie, T. D., Sun, L., and Tsong, T. Y. (1990) Study of mechanisms of electrid field-induced DNA transfection, I. DNA entry by surface binding and diffusion through membrane pores. Biophys. J. 58, 13–19.

    Article  PubMed  CAS  Google Scholar 

  9. Abidor, I. G., Arakelyan, V. B., Chernomordik, L. V., and Chizmadzhev, Yu., A. (1979) Electric breakdown of bilayer membranes. I. The main experimental facts and their qualitative discussion. Bioelectrochem. Bioenerg. 6, 37–52.

    Article  CAS  Google Scholar 

  10. Zelev, D. V. and Needham, D. (1993) Tension-stabilized pores in gaint vesicles: Determination of pore size and pore line tension. Biochim. Biophys. Acta 1147, 89–104.

    Article  Google Scholar 

  11. Holzapfel, C. J., Vienkan, J., and Zimmermann, U. (1982) Rotation of cells in an alternating electric field: Theory and experimental proof. J. Membr. Biol. 67, 13–26.

    Article  PubMed  CAS  Google Scholar 

  12. Rols, M. P. and Teissié, J. (1990) Electropermeabilization of mammalian cells: Quantitative analysis of the phenomenon. Biophys. J. 58, 1089–1098.

    Article  PubMed  CAS  Google Scholar 

  13. Stenger, D. A., Kaler, K. V. I. S., and Hui, S. W. (1991) Dipole interactions in electrofusion: contributions of membrane potential and effective dipole to interaction pressure. Biophys. J. 59, 1074–1084.

    Article  PubMed  CAS  Google Scholar 

  14. Needham, D. and Hochmuth, R. M. (1989) Electro-mechanical permeabilization of lipid vesicles: Role of membrane tension and compressibility. Biophys. J. 55, 1001–1009.

    Article  PubMed  CAS  Google Scholar 

  15. Klenchin, V. A., Sukharev, S. I., Serov, S. M., Chernomodok. L. V., and Chizmadzhev, Yu. A. (1991) Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys. J. 60, 804–811.

    Article  PubMed  CAS  Google Scholar 

  16. Wolf, H., Rols, M. P., Boldt, E. Neumann, E., and Teissié, J. (1994) Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys. J. 66, 524–531.

    Article  PubMed  CAS  Google Scholar 

  17. Andreason, G. L. and Evans, G. A. (1989) Optimization of electroporation for transfection of mammalian cells. Anal. Biochem. 180, 269–275.

    Article  PubMed  CAS  Google Scholar 

  18. Sukharev, S. I., Klenchin, V. A., Serov, S. M., Chernomodok. L. V., and Chizmadzhev, Yu. A. (1992) Electroporation and electrophoretic DNA transfer into cells: The effect of DNA interaction with electropores. Biophys. J. 63, 1320–1327.

    Article  PubMed  CAS  Google Scholar 

  19. Nickoloff, J. A. and Reynolds, R. J. (1992) Electroporation-mediated gene transfer efficiency is reduced by linear plasmid carrier DNAs. Anal. Biochem. 205, 237–243.

    Article  PubMed  CAS  Google Scholar 

  20. Hibino, M., Shigemori, M., Itoh, H., Nagayama, K., and Kinosita, K. Jr. (1991) Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane conductance. Biophys. J. 59, 209–220.

    Article  PubMed  CAS  Google Scholar 

  21. Schwister, K. and Deuticke, B. (1985) Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Biochim. Biophys. Acta 816, 332–348.

    Article  PubMed  CAS  Google Scholar 

  22. Liang, H., Purucker, W. J., Stenger, D. A., Kubiniec, R. T., and Hui, S. W. (1988) Uptake of fluorescence-labeled dextrans by 10T-1/2 fibroblasts following permeation by rectangular and exponential-decay electric field pulse. Biotechniques 6, 550–558.

    PubMed  CAS  Google Scholar 

  23. Prausnitz, M. R., Milano, C. D., Gimm, J. A., Langer, R., and Weaver, J. C. (1994) Quantitative study of molecular transport due to electroporation: Uptake of bovine serum albumin by erythrocyte ghosts. Biophys. J. 66, 1522–1530.

    Article  PubMed  CAS  Google Scholar 

  24. Kubiniec, R. T., Liang, H., and Hui, S. W. (1990) Effects of pulse length and pulse strength on transfection by electroporation. Biotechniques 8, 1–3.

    Google Scholar 

  25. Xie, T. D. and Tsong, T. Y. (1992) Study of mechanisms of electrid field-induced DNA transfection, III. Electric parameters and other conditions for effective transfection. Biophys. J. 63, 28–34.

    Article  PubMed  CAS  Google Scholar 

  26. Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E. (1992) Guide to Electroporation and Electrofusion. Academic Press, San Diego, CA.

    Google Scholar 

  27. Baker, P. F. and Knight, D. E. (1983). High voltage techniques for gaining access to the interior of cells: Application to the study of exocytosis and membrane turnover. Methods Enzymol. 98, 23–37.

    Google Scholar 

  28. Abidor, I. G., Li, L. H., and Hui, S. W. (1994) Studies of cell pellets. II. Osmotic properties, electroporation and related phenomena. Membrane interactions. Biophys. J. 67, 427–435.

    Article  PubMed  CAS  Google Scholar 

  29. Li, L. H., Ross, P., and Hui, S. W. (1999) Improving electrotransfection efficiency by post-pulse centrifugation. Gene Ther. 6, 364–372.

    Article  PubMed  CAS  Google Scholar 

  30. Hui, S. W., Stoicheva, N., and Zhao, Y-L. (1996) High efficiency loading, transfection and fusion of cells by electroporation in two-phase polymer systems. Biophys. J. 71, 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  31. Li, L. H., Sen, A., Murphy, S. P., Jahreis, G. P., and Hui, S. W. (1999) DNAupdate induces apoptosis and limits transfection efficiency. Exp. Cell Res. (in press).

    Google Scholar 

  32. Chang, D. C., Gao, P. Q., and Maxwell, B. L. (1991) High efficiency gene transfection by electroporation using a radio-frequency electric field. Biochim. Biophys. Acta 1992, 153–160.

    Article  Google Scholar 

  33. Tekle, E., Austumian, R. D., and Chock, P. B. (1991) Electroporation by using bipolar oscillating electric field: an improved method for DNA trandfection of NIH/3T3 cells. Proc. Natl. Acad. Sci. USA 88, 4230–4234.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hui, S.W., Li, L.H. (2000). In Vitro and Ex Vivo Gene Delivery to Cells by Electroporation. In: Jaroszeski, M.J., Heller, R., Gilbert, R. (eds) Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery. Methods in Molecular Medicine, vol 37. Humana Press. https://doi.org/10.1385/1-59259-080-2:157

Download citation

  • DOI: https://doi.org/10.1385/1-59259-080-2:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-606-2

  • Online ISBN: 978-1-59259-080-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics