Skip to main content

Principles of Membrane Electroporation and Transport of Macromolecules

  • Protocol

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 37))

Abstract

The phenomenon of membrane electroporation (ME) methodologically comprises an electric technique to render lipid and lipid-protein membranes porous and permeable, transiently and reversibly, by electric voltage pulses. It is of great practical importance that the primary structural changes induced by ME, condition the electroporated membrane for a variety of secondary processes, such as, for instance, the permeation of otherwise impermeable substances.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Neumann, E. and Rosenheck K. (1972) Permeability changes induced by electric impulses in vesicular membranes. J. Membr. Biol. 10, 279–290.

    Article  PubMed  CAS  Google Scholar 

  2. Wong, T. K. and Neumann, E. (1982) Electric field mediated gene transfer. Biophys. Biochem. Res. Commun. 107, 584–587.

    Article  CAS  Google Scholar 

  3. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845.

    PubMed  CAS  Google Scholar 

  4. Neumann, E. and Kakorin, S. (1998) Digression on membrane electroporation and electroporative delivery of drugs and genes. Radiol. Oncol. 32, 7–17.

    CAS  Google Scholar 

  5. Neumann, E., Gerisch, G., and Opatz, K. (1980) Cell fusion induced by electric impulses applied to dictyostelium. Naturwissenschaften 67, 414–415.

    Article  Google Scholar 

  6. Mouneimne, Y., Tosi, P. F., Gazitt, Y., and Nicolau, C. (1989) Electro-insertion of xenoglycophorin into the red blood cell membrane. Biochem. Biophys. Res. Commun. 159, 34–40.

    Article  PubMed  CAS  Google Scholar 

  7. Pliquett, U., Zewert, T. E., Chen, T., Langer, R., and Weaver, J. C. (1996) Imaging of fluorescent molecule and small ion-transport through human stratumcorneum during high-voltage pulsing-localized transport regions are involved. Biophys. Chem. 58, 185–204.

    Article  PubMed  CAS  Google Scholar 

  8. Mir, L. M., Orlowski, S., Belehradek, J. Jr., Teissié, J., Rols, M. P., Serša, G., Miklavčič, D., Gilbert, R., and Heller, R. (1995) Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy. Bioelectrochem. Bioenerg. 38, 203–207.

    Article  CAS  Google Scholar 

  9. Neumann, E., Toensing, K., Kakorin, S., Budde, P., and Frey, J. (1998) Mechanism of electroporative dye uptake by mouse B cells. Biophys. J. 74, 98–108.

    Article  PubMed  CAS  Google Scholar 

  10. Neumann, E., Kakorin, S., Tsoneva, I., Nikolova, B., and Tomov, T. (1996) Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation. Biophys. J. 71, 868–877.

    Article  PubMed  CAS  Google Scholar 

  11. Kakorin, S., Redeker, E., and Neumann, E. (1998) Electroporative deformation of salt filled lipid vesicles. Eur. Biophys. J. 27, 43–53.

    Article  CAS  Google Scholar 

  12. Kakorin, S. and Neumann, E. (1998) Kinetics of electroporation deformation of lipid vesicles and biological cells in an electric field. Ber. Bunsenges. Phys. Chem. 102, 670–675.

    CAS  Google Scholar 

  13. Winterhalter, M., Klotz, K.-H., Benz, R., and Arnold, W. M. (1996) On the dynamics of the electric field induced breakdown in lipid membranes. IEEE Trans. Ind. Appl. 32, 125–128.

    Article  CAS  Google Scholar 

  14. Chang, C. (1992) Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. Guide to Electroporation and Electrofusion (Chang, C., Chassy, M., Saunders, J., and Sowers, A., eds.), Academic Press, San Diego, CA, pp. 9–28.

    Google Scholar 

  15. Hibino, M., Itoh, H., and Kinosita, K. (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys. J. 64, 1789–1800.

    Article  PubMed  CAS  Google Scholar 

  16. Weaver, J. C. (1994) Molecular-basis for cell-membrane electroporation. Ann. N.Y. Acad. Sci. 720, 141–152.

    Article  PubMed  CAS  Google Scholar 

  17. Weaver, J. and Chizmadzhev, Yu. (1996) Theory of electroporation: A review. Biolectrochem. Bioenerg. 41, 135–160.

    Article  CAS  Google Scholar 

  18. Neumann, E. and Kakorin, S. (1996) Electrooptics of membrane electroporation and vesicle shape deformation. Curr. Opin. Colloid Interface Sci. 1, 790–799.

    Article  CAS  Google Scholar 

  19. Kakorin, S., Stoylov, S. P., and Neumann, E. (1996) Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles. Biophys. Chem. 58, 109–116.

    Article  PubMed  CAS  Google Scholar 

  20. Kinosita, Jr., Hibino, M., Itoh, H., Shigemori, M., Hirano, H., Kirino, Y., and Hayakawa, T. (1992) Events of membrane electroporation visualized on time scale from microsecond to second. Guide to Electroporation and Electrofusion (Chang, C., Chassy, M., Saunders, J., and Sowers, A., eds.), Academic Press, San Diego, CA, pp. 29–47.

    Google Scholar 

  21. Neumann, E. (1989) The relaxation hysteresis of membrane electroporation. Electroporation and Electrofusion in Cell Biology (Neumann, E., Sowers, A. E., and Jordan, C., eds.), Plenum, New York, pp. 61–82.

    Google Scholar 

  22. Smaby, J. and Brockman, H. (1990) Surface dipole moments of lipids at the argon-water interface. Biophys. J. 58, 195–204.

    Article  PubMed  CAS  Google Scholar 

  23. Cevc, G. and Seddon, J. (1993) Physical characterization. Phospolipid Handbook (Cevc G., ed.), Marcel Dekker, New York, pp. 351–402.

    Google Scholar 

  24. Neumann, E. (1992) Membrane electroporation and direct gene transfer. Biochem. Bioenerg. 28, 247–267.

    Article  CAS  Google Scholar 

  25. Cevc, G. (1990) Membrane electrostatics. Biochim. Biophys. Acta 1031, 311–382.

    PubMed  CAS  Google Scholar 

  26. Neumann, E. and Boldt, E. (1989) Membrane electroporation: Biophysical and biotechnical aspects. Charge and Field Effects in Biosystems, Vol. 2 (Allen, M., Cleary, S., and Hawkridge, F., eds.), Plenum, New York, pp. 373–382.

    Google Scholar 

  27. Neumann, E. (1986) Elementary analysis of chemical electric field effects in biological macromolecules I and II. Modern Bioelectrochemistry (Gutmann, F. and Keyzer, H., eds.), Plenum, New York, pp. 97–132 and 133-175.

    Google Scholar 

  28. Neumann, E. (1986) Chemical electric field effects in biological macromolecules. Prog. Biophys. Mol. Biol. 47, 197–231.

    Article  PubMed  CAS  Google Scholar 

  29. Steiner, U. and Adam, G. (1984) Interfacial properties of hydrophilic surfaces of phospholipid films as determined by method of contact angles. Cell Biophys. 6, 279–299.

    PubMed  CAS  Google Scholar 

  30. Tönsing, K., Kakorin, S., Neumann, E., Liemann, S., and Huber, R. (1997) Annexin V and vesicle membrane electroporation. Eur. Biophys. J. 26, 307–318.

    Article  PubMed  Google Scholar 

  31. Seifert, U. and Lipowsky, R. (1995) Morphology of vesicles. Structure and Dynamics of Membranes, Vol. 1A (Lipowsky, R. and Sackmann, E., eds.), Elsevier, Amsterdam, pp. 403–463.

    Chapter  Google Scholar 

  32. Lipowsky, R. (1998) Vesicles and Biomembranes. Encycl. Appl. Phys. 23, 199–222.

    Google Scholar 

  33. Winterhalter, M. and Helfrich, W. (1988) Effect of surface charge on the curvature elasticity of membranes. J. Phys. Chem. 92, 6865–6867.

    Article  CAS  Google Scholar 

  34. Fogden, A., Mitchell, D. J., and Ninham B. W. (1990) Undulations of charged membranes. Langmuir 6, 159–162.

    Article  CAS  Google Scholar 

  35. Abidor, I. G., Arakelyan, V. B., Chernomordik, L. V., Chizmadzhev, Y. A., Pastuchenko, V. P., and Tarasevich, M. R. (1979) Electric breakdown of bilayer lipid membrane. I. The main experimental facts and their theoretical discussion. Bioelectrochem. Bioenerg. 6, 37–52.

    Article  CAS  Google Scholar 

  36. Klösgen, B. and Helfrich, W. (1993) Special features of phosphatidylcholine vesicles as seen in cryo-transmission electron-microscopy. Eur. Biophys. J. 22, 329–340.

    Article  PubMed  Google Scholar 

  37. Spassova, M., Tsoneva, I., Petrov, A. G., Petkova, J. I., and Neumann, E. (1994) Dip patch clamp currents suggest electrodifusive transport of the polyelectrolyte DNA through lipid bilayers. Biophys. Chem. 52, 267–274.

    Article  PubMed  CAS  Google Scholar 

  38. Hristova, N. I., Tsoneva, I., and Neumann, E. (1997) Sphingosine-mediated electroporative DNA transfer through lipid bilayers. FEBS Lett. 415, 81–86.

    Article  PubMed  CAS  Google Scholar 

  39. Israelachvili, J. N. and Pashley, R. M. (1984) Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions, J. Colloid Interface Sci. 98, 500–514.

    CAS  Google Scholar 

  40. Sukharev, S. I., Klenchin, V. A., Serov, S. M., Chernomordik, L. V., and Chizmadzhev, Y. A. (1992) Electroporation and electrophoretic DNA transfer into cells: The effect of DNA interaction with electropores. Biophys. J. 63, 1320–1327.

    Article  PubMed  CAS  Google Scholar 

  41. Chirico, G., Beretta, S., and Baldini, G. (1992) Light scattering of DNA plasmids containing repeated curved insertions: Anomalous compaction. Biophys. Chem. 45, 101–108.

    Article  CAS  Google Scholar 

  42. Mir, L., Tounekti, O., and Orlowski, S. (1996) Bleomycin: Revival of an old drug. [Review] Gen. Pharmacol. 27, 745–748.

    PubMed  CAS  Google Scholar 

  43. Gehl, J., Skovsgaard, T., and Mir, L. (1998) Enhancement of cytoxicity by electropermeabilization: An improved method for screening drugs. Anticancer Drugs 9, 319–325.

    Article  PubMed  CAS  Google Scholar 

  44. Heller, R., Jaroszeski, M., Glass, L., Messina, J., Rapaport, D., DeConti, R., Fenske, N., Gilbert, R., Mir, L., and Reintgen, D. (1996) Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer 77, 964–971.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Neumann, E., Kakorin, S., Toensing, K. (2000). Principles of Membrane Electroporation and Transport of Macromolecules. In: Jaroszeski, M.J., Heller, R., Gilbert, R. (eds) Electrochemotherapy, Electrogenetherapy, and Transdermal Drug Delivery. Methods in Molecular Medicine, vol 37. Humana Press. https://doi.org/10.1385/1-59259-080-2:1

Download citation

  • DOI: https://doi.org/10.1385/1-59259-080-2:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-606-2

  • Online ISBN: 978-1-59259-080-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics