Electrical Impedance Spectroscopy for Rapid and Noninvasive Analysis of Skin Electroporation

  • Uwe Pliquett
  • Mark R. Prausnitz
Part of the Methods in Molecular Medicine book series (MIMM, volume 37)


Transient disruption of skin’s barrier properties using high-voltage pulses involves complex changes in skin microstructure believed to be due to electroporation. Electroporation of cell membranes is a well known phenomenon which has found extensive use as a method of DNA transfection in biological laboratories (1, 2, 3). More recently, it has been shown that the multilamellar lipid bilayer membranes found in skin can also be electroporated (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17). The dramatic and reversible increases in skin permeability caused by electroporation indicate that drugs might be delivered transdermally at significantly enhanced rates. Especially for macromolecules, such as protein- and gene-based drugs, electroporation-mediated transdermal drug delivery could be an important pharmaceutical approach.


Stratum Corneum Skin Resistance Outer Electrode Skin Impedance Viable Epidermis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bouwstra, J.-A., Gooris, G. S., Weerheim, A., Kempenaar, J., and Ponec, M. (1995) Characterization of stratum corneum structure in reconstructed epidermis by X-ray diffraction. J. Lipid Res. 36, 496–504.PubMedGoogle Scholar
  2. 2.
    Weaver, J. C. and Chizmadzhev, Y. A. (1996) Electroporation, in CRC Handbook of Biological Effects of Electromagnetic Fields (Polk, C. and Postow, E., eds.), CRC Press, Boca Raton, FL, pp. 247–274.Google Scholar
  3. 3.
    Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E. (1992) Guide to Electroporation and Electrofusion, Academic Press, New York.Google Scholar
  4. 4.
    Chizmadzhev, Y. A., Zarnitsin, V. G., Weaver, J. C., and Potts, R. O. (1995) Mechanism of electroinduced ionic species transport through a multilamellar lipid system. Biophys. J. 68, 749–765.PubMedCrossRefGoogle Scholar
  5. 5.
    Pliquett, U., Zewert, T. E., Chen, T., Langer, R., and Weaver, J. C. (1996) Imaging of fluorescent molecule and small ion transport through human stratum corneum during high-voltage pulsing: Localized transport regions are involved. Biophys. Chem. 58, 185–204.PubMedCrossRefGoogle Scholar
  6. 6.
    Vanbever, R., Lecouturier, N. and Preat, V. (1994) Transdermal delivery of metoprolol by electroporation. Pharmacol. Res. 11, 1657–1662.CrossRefGoogle Scholar
  7. 7.
    Prausnitz, M. R., Bose, V. G., Langer, R., and Weaver, J. C. (1993) Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA, 90, 10,504–10,508.PubMedCrossRefGoogle Scholar
  8. 8.
    Moghimi, H. R., Williams, A. C., and Barry, B. W. (1996) A lamellar matrix model for stratum corneum intercellular lipids. I. Characterisation and comparison with stratum corneum intercellular structure. Int. J. Pharmacol. 131, 103–115.CrossRefGoogle Scholar
  9. 9.
    Champion, R. H., Burton, J. L., and Ebling, F. J. G. (1992) Textbook of Dermatology, Blackwell Scientific, London.Google Scholar
  10. 10.
    Vanbever, R., Fouchard, D., Jodoul, A., de Morre, N., Preat, V., and Marty, J.-P. (1998) In vivo noninvasive evaluation of hairless rat skin after high-voltage pulse exposure. Skin Pharmacol. 11, 23–34.CrossRefGoogle Scholar
  11. 11.
    Jadoul, A., Regnier, V., Duocet, J., and Preat, V. (1997) X-ray-scattering analysis of the stratum corneum treated by high voltage pulses. Pharmacol. Res. 14, 1275–1277.CrossRefGoogle Scholar
  12. 12.
    Jadoul, A., Tanajo, H., Preat, V., Spies, F., and Bodde, H. E. (1998) Electroperturbation of human stratum corneum fine structure by high voltage pulses: A freeze fracture electron microscopy and differnetial thermal analysis. J. Invest. Dermatol. Symp. Proc. 3, 153–158.Google Scholar
  13. 13.
    Prausnitz, M. R., Gimm, J. A., Guy, R. H., Langer, R., Weaver, J. C., and Cullander, C. (1996) Imaging regions of transport across human stratum corneum during high voltage and low voltage exposures. J. Pharm. Sci. 85, 1363–1370.PubMedCrossRefGoogle Scholar
  14. 14.
    Nicander, I., Ollmar, S., Rozell, B. L., Eek, A., and Emtestam, L. (1995) Electrical impedance measured to five skin depths in mild irritant dermatitis induced by sodium lauryl sulphate. Br. J. Dermatol. 132, 718–724.PubMedCrossRefGoogle Scholar
  15. 15.
    Kontturi, K., Murtomaki, L., Hirvonen, J., Paronen, P., and Urtti, A. (1993) Electrochemical characterization of human skin by impedance spectroscopy: The effect of penetration enhancers. Pharmacol. Res. 10, 381–385.CrossRefGoogle Scholar
  16. 16.
    Emtestam, L. and Ollmar, S. (1993) Electrical impedance index in human skin: Measurements after occlusion, in 5 anatomical regions and in mild irritant contact dermatitis. Contact Dermatitis 28, 104–108.PubMedCrossRefGoogle Scholar
  17. 17.
    Nicander, I., Ollmar, S., Eek, A., Lundh Rozell, B., and Emtestam, L. (1996) Correlation of impedance response patterns to histological findings in irritant skin reactions induced by various surfactants. Br. J. Dermatol. 134, 221–228.PubMedCrossRefGoogle Scholar
  18. 18.
    Ollmar, S., Eek, A., Sundstrom, F., and Emtestam, L. (1995) Electrical impedance for estimation of irritation in oral mucosa and skin. Med. Prog. Technol. 21, 29–37.PubMedGoogle Scholar
  19. 19.
    Kalia, Y. N., Nonato, L. B., and Guy, R. H. (1996) The effect of iontophoresis on skin barrier integrity: Non-invasive evaluation by impedance spectroscopy and transepidermal water loss. Pharmacol. Res. 13, 957–960.CrossRefGoogle Scholar
  20. 20.
    Craane van Hinsberg, W. H. M., Verhoef, J. C., Junginger, H. E., and Bodde, H. E. (1997) Electroperturbation of the human skin barrier in vitro (I): The influence of current density on the thermal behaviour of skin impedance. Eur. J. Pharm. Biopharm. 43, 43–50.CrossRefGoogle Scholar
  21. 21.
    Pliquett, U., Langer, R., and Weaver, J. C. (1995) Changes in the passive electrical properties of human stratum corneum due to electroporation. Biochim. Biophys. Acta 1239, 111–121.PubMedCrossRefGoogle Scholar
  22. 22.
    Prausnitz, M. R., Lee, C. S., Liu, C. H., Pang, J. C., Singh, T. P., Langer, R., and Weaver, J. C. (1996) Transdermal transport efficiency during skin electroporation and iontophoresis. J. Controlled Release 38, 205–217.CrossRefGoogle Scholar
  23. 23.
    Foster, K. R. and Schwan, H. P. (1989) Dielectric properties of tissues and biological materials: A critical review. CRC Crit. Rev. Biomed. Eng. 17, 25–104.Google Scholar
  24. 24.
    McDonald, J. R. (1992) Impedance Spectroscopy. Ann. Biomed. Eng. 20, 289–305.CrossRefGoogle Scholar
  25. 25.
    Burnette, R. R. and DeNuzzio, J. D. (1997) Impedance spectroscopy: Applications to human skin, in Mechanisms of Transdermal Drug Delivery (Potts, R. O. and Guy, R. H., eds.), Marcel Dekker, New York, pp. 215–230.Google Scholar
  26. 26.
    Potts, R. O., Francoeur, M. L., and Guy, R. H. (1992) Routes of ionic permeability through mammalian skin. Solid State Ionics 53-56, 165–169.CrossRefGoogle Scholar
  27. 27.
    Bodde, H. E., Kruithof, M. A. M., Brussee, J., and Koerten, H. K. (1989) Visualisation of normal and enhanced HgCl2 transport through human skin in vitro. Int. J. Pharm. 53, 13–24.CrossRefGoogle Scholar
  28. 28.
    Elias, P. M. (1988) Structure and function of the stratum corneum permeability barrier. Drug Dev. Res. 13, 97–105.CrossRefGoogle Scholar
  29. 29.
    Elias, P. M. and Menon, G. K. (1991) Structural and lipid biochemical correlates of the epidermal permeability barrier. J. Adv. Lipid Res. 24, 1–26.Google Scholar
  30. 30.
    Craane van Hinsberg, W. H. M., Bax, L., Flinterman, N. H., Verhoef, J. C., Junginger, H. E., and Bodde, H. E. (1994) Iontophoresis of a model peptide across human skin in vitro: effects of iontophoresis protocol, pH, and ionic strength on peptide flux and skin impedance. Pharmacol. Res. 11, 1296–1300.CrossRefGoogle Scholar
  31. 31.
    Gersing, E., Hofmann, B., and Osypka, M. (1996) Influence of changing peripheral geometry on electrical impedance tomography measurements. Med. Biol. Eng. Comput. 34, 359–361.PubMedCrossRefGoogle Scholar
  32. 32.
    Pliquett, U. and Weaver, J. C. (1996) Electroporation of human skin: Simultaneous measurement of changes in the transport of two fluorescent molecules and in the passive electrical properties. Bioelectrochem. Bioenerg. 39, 1–12.CrossRefGoogle Scholar
  33. 33.
    Schwan, H. P. (1963) Determination of biological impedances. Phys. Tech. Biol. Res. 6, 323–407.Google Scholar
  34. 34.
    Stanley, W. D. (1982) Electronic Communications Systems. Reston Publishing, Reston, VA.Google Scholar
  35. 35.
    Jong, M. T. (1982) Methods of Discrete Signal and System Analysis. McGrawHill, New York.Google Scholar
  36. 36.
    Horowitz, J. C. and Hill, F. R. (1980) The Art of Electronics. Cambridge University Press, Cambridge, UK.Google Scholar
  37. 37.
    Gummer, C. L. (1989) The in vitro evaluation of transdermal delivery, in Transdermal Drug Delivery: Development Issues and Research Initiatives (Hadgraft, J. and Guy, R. H., eds.), Marcel Dekker, New York, pp. 177–186.Google Scholar
  38. 38.
    Kasting, G. G. and Bowman, L. A. (1990) Electrical analysis of fresh excised human skin: A comparison with frozen skin. Pharmacol. Res. 7, 1141–1146.CrossRefGoogle Scholar
  39. 39.
    Tanojo, H., Roemele, P. E. H., Van Veen, G. H., Stieltjes, H., Junginger, H. E., and Bodde, H. E. (1997) New design of a flow-through permeation cell for studying in vitro permeation studies across biological membranes. Controlled Release 45, 41–47.CrossRefGoogle Scholar
  40. 40.
    Pliquett, U. and Gusbeth, C., Calcein as model for hydrophilic drugs, manuscript under review.Google Scholar
  41. 41.
    Martin, G. T., Pliquett, U., and Weaver, J. C., Temperature rising during tissue electroporation: Theoretical modeling, manuscript under review.Google Scholar
  42. 42.
    Pliquett, U. and Weaver, J. C., Passive electrical properties of human stratum corneum during application of electric fields, in Electricity and Magnetism in Medicine and Biology (Bersani, F., ed.), in press.Google Scholar
  43. 43.
    Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992) Numerical Recipes in Pascal. Cambridge University Press, Cambridge, UK.Google Scholar
  44. 44.
    Atkins, P. W. (1995) Physical Chemistry. Oxford University Press, Oxford, UK.Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Uwe Pliquett
    • 1
  • Mark R. Prausnitz
    • 2
  1. 1.University of BielefeldBielefeldGermany
  2. 2.Schools of Chemical Engineering and Biomedical EngineeringGeorgia Institute of TechnologyAtlanta

Personalised recommendations