Skip to main content

Advantages and Disadvantages of Multiple Different Methods of Adenoviral Vector Construction

  • Protocol
Hepatocellular Carcinoma

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 45))

Abstract

Adenoviruses are medium-sized nonenveloped DNA tumor viruses whose genome consists of a linear double-stranded DNA molecule of about 36 Kb (reviewed in refs. 13). Adenoviruses have icosahedral geometry with a diameter of approx 70-100 nm. Currently, over 100 different mammalian and foul adenovirus (Ad) serotypes have been characterized, with 49 of them being human serotypes. The most extensively characterized serotypes are 2, 5, and 12, with type-5-based vectors being the most popular. Ad virus transcription, replication, and packaging have been extensively studied and take place in the nucleus of infected cells, with transcription and replication requiring both cellular and viral proteins. Expression of the Ad genome is divided into two phases: early, which occurs before DNA replication, and late, which occurs after the initiation of DNA replication. Transcription during the early phase of adenoviral infection involves the highly orchestrated expression of four pol IIdependent regions, E1, E2, E3, and E4, which each code for multiple mRNAs. E1 is further divided into two transcriptional units E1A and E1B. E1A coordinates transcriptional control of the virus, whereas E1B gene products influence the early to late transition by coordinating viral to cellular mRNA metabolism and host protein shutoff. Additionally, the E1B region obstructs the apoptotic signals induced by E1A. The E2 region codes for three proteins essential for viral DNA replication; terminal protein precursor, DNA polymerase, and DNA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginsberg, H. S. (ed.) (1984) The Adenoviruses, Plenum, New York.

    Google Scholar 

  2. Shenk, T. (1996) Adenovidae: the viruses and their replication, in Field Virology (3rd ed.) (Fields, B.N. et al., eds.) Lippincot-Raven, Philadelphia, pp. 2111–2148.

    Google Scholar 

  3. Seth, P. (1998) Vectors for cancer gene therapy, in Gene Therapy for the Treatment of Cancer (Huber, B. and Magrath, I. eds.) Cambridge University Press, Cambridge, pp. 41–77.

    Chapter  Google Scholar 

  4. Bett, A. J., Previc, L., and Graham, F.L. (1993) Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 67, 5911–5921.

    CAS  PubMed  Google Scholar 

  5. Bett, A. J., Haddara, W., Previc, L., and Graham, F.L. (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early region 1 and 3. Proc. Natl. Acad. Sci. USA 91, 8802–8806.

    Article  CAS  PubMed  Google Scholar 

  6. Hearing, P., Samulski, R.J., Wishart, W.L., and Shenk, T. (1987) Identification of a repeated sequence element required for efficient encapsidation of the adenovirus type 5 chromosome. J. Virol. 61, 2555–2558.

    CAS  PubMed  Google Scholar 

  7. Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus 5. J. Gen. Virol. 36, 59–72.

    Article  CAS  PubMed  Google Scholar 

  8. Fallaux, F.J., Kranenburg, O., Cramer, S.J., Houweling, A., van Ormondt, H., Hoeben, R.C., et al.(1996) Characterization of 911: A new helper cell line for the titration and propagation of early-region-1-deleted adenoviral vectors. Hum. Gene Ther. 7, 215–222.

    Article  CAS  PubMed  Google Scholar 

  9. Berkner, K.L., and Sharp, P.A. (1983). Generation of adenovirus by transfection of plasmids. Nucleic Acids Res. 11, 6003–6020.

    Article  CAS  PubMed  Google Scholar 

  10. Gilardi, P., Courtney, M., Pavirani, A., and Perricaudet, M. (1990) Expression of human alpha 1-antitrypsin using recombinant adenovirus vector. FEBS Lett. 267, 60–62.

    Article  CAS  PubMed  Google Scholar 

  11. Rosenfeld, M.A., Siegfried, W., Yoshimura, K., Yoneyama, K., Fukayama, M., Stier, L.E., et al. (1991) Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science. 252, 431–434.

    Article  CAS  PubMed  Google Scholar 

  12. McGrory, J., Bautista, D., and Graham, F.L. (1988) A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology. 163, 614–617.

    Article  CAS  PubMed  Google Scholar 

  13. Miyake, S., Makimura, M., Kanegae, Y., Harada, S., Sato, Y., Takamori, K., et al. (1996) Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc. Natl. Acad. Sci. USA 93, 1320–1324.

    Article  CAS  PubMed  Google Scholar 

  14. Okada T., Ramsey, W.J., Munir, J., Wildner, O., and Blaese, R.M. (1998) Efficient directional cloning of recombinant adenovirus vectors using DNA-protein complex. Nucleic Acids Res. 26, 1947–1950.

    Article  CAS  PubMed  Google Scholar 

  15. Mizuguchi, H. and Kay, M.A. (1998). Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum. Gene Ther. 9, 2577–2583.

    Article  CAS  PubMed  Google Scholar 

  16. Ketner, G., Spencer, F., Tugendreich, S., Connelly, C., and Hieter, P. (1994) Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone. Proc. Natl. Acad. Sci. USA 91, 6186–6190.

    Article  CAS  PubMed  Google Scholar 

  17. Chartier, C., Degryse, E., Gantzer, M., Dieterle, A., Pavirani, A., and Mehtali, M. (1996) Efficient generation of recombinant adenvirus vectors by homologous recombination in Escherichia coli. J. Virol. 70, 4805–4810.

    CAS  PubMed  Google Scholar 

  18. Crouzet, J., Naudin, L., Orsini, C., Vigne, E., Ferrero, L., Le Roux, A., et al. (1997) Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proc. Natl. Acad. Sci. USA 94, 1414–1419.

    Article  CAS  PubMed  Google Scholar 

  19. He, T.C., Zhou, S., Da Costa, L.T., Yu, J., Kinzler, K.W., and Vogelstein, B (1998) A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514.

    Article  CAS  PubMed  Google Scholar 

  20. Engelhardt, J.F., Ye, X., Doranz, B., and Wilson, J.M. (1994) Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc. Natl. Acad. Sci. USA 91, 6196–6200.

    Article  CAS  PubMed  Google Scholar 

  21. Engelhardt, J.F., Litzky, L., and Wilson, J.M. (1994) Prolonged transgene expression in cotton rat lung with recombinant adenoviruses defective in E2a. Hum. Gene Ther. 5, 1217–1229.

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan, J.M., St. George, J.A., Pennington, S.E., Keyes, L.D., Johnson, R.P., Wadsworth, S.C., et al. (1996) Humoral and cellular immune responses of non-human primates to long term repeated lung exposure to Ad2/CFTR-2. Gene Ther. 3, 117–127.

    CAS  PubMed  Google Scholar 

  23. Mitani, K., Graham, F.L., Caskey, C.T., and Kochanek, S. (1995) Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc. Natl. Acad. Sci. USA 92, 3854–3858.

    Article  CAS  PubMed  Google Scholar 

  24. Fisher, K.J., Choi, H., Burda, J., Chen, S.J., and Wilson, J.M. (1996) Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology. 217, 11–22.

    Article  CAS  PubMed  Google Scholar 

  25. Kochanek, S., Clemens, P.R., Mitani, K., Chen, H.H., Chan, S., and Caskey, T. (1996) A new adenoviral vector: replacement of all viral coding sequences with 28 Kb of DNA expressing both full-length dystrophin and â-galactosidase. Proc. Natl. Acad. Sci. USA 93, 5731–5736.

    Article  CAS  PubMed  Google Scholar 

  26. Parks, R.J., Chen, L., Anton, M., Sankar, U., Rudnicki, M.A., and Graham, F.L. (1996) A helper-dependent adenovirus vector system: Removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13,565–13,570.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Seth, P., Higginbotham, J. (2000). Advantages and Disadvantages of Multiple Different Methods of Adenoviral Vector Construction. In: Habib, N.A. (eds) Hepatocellular Carcinoma. Methods in Molecular Medicine™, vol 45. Humana Press. https://doi.org/10.1385/1-59259-079-9:189

Download citation

  • DOI: https://doi.org/10.1385/1-59259-079-9:189

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-785-4

  • Online ISBN: 978-1-59259-079-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics