Electron Cryomicroscopy and Computer Image Processing Techniques

Use in Structure-Function Studies of Rotavirus
  • B. V. Venkataram Prasad
  • Mary K. Estes
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 34)


Rotavirus (RV), a double-stranded (ds)RNA virus in the family Reoviridae, is a complex, relatively large (diameter, including spikes = 1000 Å), nonenveloped icosahedral virus. Once RV was recognized as a major human pathogen, it was extensively studied using modern molecular genetic and biological techniques, as discussed elsewhere in this book. These studies provided basic information about gene-coding assignments, protein processing, genome expression and replication, viral morphogenesis, and pathogenesis (1). In addition, molecular epidemiological studies, coupled with the characterization of neutralizing monoclonal antibodies (MAbs) and sequencing of the genes that encode the neutralizing antigens, provided an understanding at the molecular level of the antigenic and genetic variability of the RVs.


dsRNA Virus Icosahedral Symmetry Icosahedral Virus Computer Image Processing Aqueous Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Estes, M. K. (1996) Rotaviruses and their replication, in Virology (Fields, B. N., Knipe, D. M., and Howley, P. M., eds.), Lippencott Raven, Philadelphia, pp. 1625–1655.Google Scholar
  2. 2.
    Prasad, B. V. V., Wang, G. J., Clerx, J. P., and Chiu, W. (1988) Three-dimensional structure of rotavirus. J. Mol. Biol. 199, 269–275.CrossRefPubMedGoogle Scholar
  3. 3.
    Prasad, B. V. V., Burns, J. W., Marietta, E., Estes, M. K., and Chiu, W. (1990) Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature 343, 476–479.CrossRefPubMedGoogle Scholar
  4. 4.
    Shaw, A. L., Rothnagel, R., Chen, D., Ramig, R. F., Chiu, W., and Prasad, B. V. V. (1993) Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell 74, 693–701.CrossRefPubMedGoogle Scholar
  5. 5.
    Yeager, M., Dryden, K. A., Olson, N. H., Greenberg, H. B., and Baker, T. S. (1990) Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. J. Cell Biol. 110, 2133–2144.CrossRefPubMedGoogle Scholar
  6. 6.
    Yeager, M., Berriman, J. A., Baker, T. S., and Bellamy, A. R. (1994) Three-dimensional structure of the rotavirus haemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO J. 13, 1011–1018.PubMedGoogle Scholar
  7. 7.
    Prasad, B. V. V., Rothnagel, R., Zeng, C. Q., Jakana, J., Lawton, J. A., Chiu, W., and Estes, M. K. (1996) Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382, 471–473.CrossRefPubMedGoogle Scholar
  8. 8.
    Prasad, B. V. V. and Estes, M. K. (1997) Molecular basis of rotavirus replication: structure-function correlations, in Structural Biology of Viruses (Chiu, W., Burnett, R., and Garcia, R., eds.), Oxford University Press, New York and Oxford, pp. 239–268.Google Scholar
  9. 9.
    Lawton, J. A., Estes, M. K., and Prasad, B. V. V. (1997) Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles Nature Struct. Biol. 4, 118–121.CrossRefPubMedGoogle Scholar
  10. 10.
    Lawton, J. A., Zeng, C. Q., Mukherjee, S. K., Cohen, J., Estes, M. K., and Prasad, B. V. V. (1997) Three-dimensional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer. J. Virol. 71, 7353–7360.PubMedGoogle Scholar
  11. 11.
    Rossmann, M. G. and Johnson, J. E. (1989) Icosahedral RNA virus structure. Annu. Rev. Biochem. 58, 533–573.CrossRefPubMedGoogle Scholar
  12. 12.
    Harrison, S., Skehel, J. J., and Wiley, D. (1996) Virus structure, in Fields Virology (Fields, B. N., Knipe, D. M. and Howley, P. M., eds.), Lippincott Raven, Philadelphia, pp. 59–99.Google Scholar
  13. 13.
    Baker, T. S. and Johnson, J. E. (1997) Principles of virus structure determination, in Structural Biology of Viruses (Chiu, W., Burnett, R., and Garcia, R., eds.), Oxford University Press, New York and Oxford, pp. 38–79.Google Scholar
  14. 14.
    Liddington, R. C., Yan, Y., Moulai, J., Sahli, R., Benjamin, T. L., and Harrison, S. C. (1991) Structure of simian virus 40 at 3.8-Å resolution.Nature 354, 278–284.CrossRefPubMedGoogle Scholar
  15. 15.
    Grimes, J. M., Burroughs, J. N., Gouet, P., Diprose, J. M., Malby, R., Zientara, S., Mertens, P. C. P., and Stuart, D. I. (1998) The atomic structure of the bluetongue virus core. Nature 395, 470–478.CrossRefPubMedGoogle Scholar
  16. 16.
    Hodge, C. N., Straatsma, T. P., McCammon, J. A., and Wlodawer, A. (1997) Rational design of HIV protease inhibitors, in Structural Biology of Viruses (Chiu, W., Burnett, R., and Garcia, R, ed.), Oxford University Press, New York and Oxford, pp. 451–473.Google Scholar
  17. 17.
    Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J., and Hendrickson, W. A. (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659.CrossRefPubMedGoogle Scholar
  18. 18.
    Petitpas, I., Lepault, J., Vachette, P., Charpilienne, A., Mathieu, M., Kohli, E., Pothier, P., Cohen, J., and Rey, F. A. (1998) Crystallization an preliminary x-ray analysis of rotavirus protein VP6. J. Virol. 72, 7615–7619.PubMedGoogle Scholar
  19. 19.
    Wang, G. J., Porta, C., Chen, Z. G., Baker, T. S., and Johnson, J. E. (1992) Identification of a Fab interaction footprint site on an icosahedral virus by cryoelectron microscopy and X-ray crystallography. Nature 355, 275–278.CrossRefPubMedGoogle Scholar
  20. 20.
    Smith, T. J., Olson, N. H., Cheng, R. H., Chase, E. S., and Baker, T. S. (1993) Structure of a human rhinovirus-bivalently bound antibody complex: implications for viral neutralization and antibody flexibility. Proc. Natl. Acad. Sci. USA 90, 7015–7018.CrossRefPubMedGoogle Scholar
  21. 21.
    Smith, T. J., Cheng, R. H., Olson, N. H., Peterson, P., Chase, E., Kuhn, R. J., and Baker, T. S. (1995) Putative receptor binding sites on alphaviruses as visualized by cryoelectron microscopy. Proc. Natl. Acad. Sci. USA 92, 10,648–10,652.CrossRefPubMedGoogle Scholar
  22. 22.
    Trus, B. L., Newcomb, W. W., Booy, F. P., Brown, J. C., and Steven, A. C. (1992) Distinct monoclonal antibodies separately label the hexons or the pentons of herpes simplex virus capsid. Proc. Natl. Acad. Sci. USA 89, 11,508–11,512.CrossRefPubMedGoogle Scholar
  23. 23.
    Olson, N. H., Kolatkar, P. R., Oliveira, M. A., Cheng, R. H., Greve, J. M., McClelland, A., Baker, T. S., and Rossmann, M. G. (1993) Structure of a human rhinovirus complexed with its receptor molecule. Proc. Natl. Acad. Sci. USA 90, 507–511.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang, G. J., Hewlett, M., and Chiu, W. (1991) Structural variation of La Crosse virions under different chemical and physical conditions. Virology 184, 455–459.CrossRefPubMedGoogle Scholar
  25. 25.
    Crowther, R. A., DeRosier, D. J., and Klug, A. (1970) The reconstruction of a threedimensional structure from projections and its applications to electron microscopy. Proc. Roy. Soc. Lond. A 317, 319–340.CrossRefGoogle Scholar
  26. 26.
    Crowther, R. A. (1971) Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 261, 221–230.CrossRefPubMedGoogle Scholar
  27. 27.
    Crowther, R. A., Henderson, R., and Smith, J. M. (1996) MRC image processing programs. J. Struct. Biol. 116, 9–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Lawton, J. A. and Prasad, B. V. V. (1996) Automated software package for icosahedral virus reconstruction. J. Struct. Biol. 116, 209–215.CrossRefPubMedGoogle Scholar
  29. 29.
    Fuller, S. D., Butcher, S. J., Cheng, R. H., and Baker, T. S. (1996) Three-dimensional reconstruction of icosahedral particles-the uncommon line. J. Struct. Biol. 116, 48–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Baker, T. S. and Cheng, R. H. (1996) A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol. 116, 120–130.CrossRefPubMedGoogle Scholar
  31. 31.
    Thuman, C. P. A. and Chiu, W. (1997) Improved common line-based icosahedral particle image orientation estimation algorithms. Ultramicroscopy 68, 231–255.CrossRefGoogle Scholar
  32. 32.
    Taylor, K. A. and Glaeser, R. M. (1975) Electron diffraction of frozen, hydrated protein crystals. Science 186, 1036–1037.CrossRefGoogle Scholar
  33. 33.
    Dubochet, J., Adrian, M., Chang, J. J., Homo, J. C., Lepault, J., McDowall, A. W., and Schultz, P. (1988) Cryo-electron microscopy of vitrified specimens. Quart. Rev. Biophys. 21, 129–228.CrossRefGoogle Scholar
  34. 34.
    Jeng, T.-W., Talmon, Y., and Chiu, W. (1988) Containment system for the preparation of vitrified-hydrated virus specimen. J. Electron Microsc. 8, 343–348.CrossRefGoogle Scholar
  35. 35.
    Chiu, W. (1986) Electron microscopy of frozen, hydrated biological specimens. Ann. Rev. Biophys. Biophys. Chem. 15, 237–257.CrossRefGoogle Scholar
  36. 36.
    Downing, K. H. (1991) Spot-scan imaging in transmission electron microscopy. Science 251, 53–59.CrossRefPubMedGoogle Scholar
  37. 37.
    Brink, J., Chiu, W., and Dougherty, M. (1992) Computer-controlled spot-scan imaging of crotoxin complex crystals with 400 keV electrons at near-atomic resolution. Ultramicroscopy 46, 229–240.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhou, Z. H., Prasad, B. V. V., Jakana, J., Rixon, F. J., and Chiu, W. (1994) Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy. J. Mol. Biol. 242, 456–469.CrossRefPubMedGoogle Scholar
  39. 39.
    Thuman, C. P. A., Greene, B., Jakana, J., Prasad, B. V. V., King, J., Prevelige, P. E., Jr., and Chiu, W. (1996) Three-dimensional structure of scaffolding-containing phage p22 procapsids by electron cryo-microscopy. J. Mol. Biol. 260, 85–98.CrossRefGoogle Scholar
  40. 40.
    Mimori, Y., Yamashita, I., Murata, K., Fujiyoshi, Y., Yonekura, K., Toyoshima, C., and Namba, K. (1995) The structure of the R-type straight flagellar filament of Salmonella at 9 A resolution by electron cryomicroscopy. J. Mol. Biol. 249, 69–87.CrossRefPubMedGoogle Scholar
  41. 41.
    Bottcher, B., Wynne, S. A., and Crowther, R. A. (1997) Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386, 88–91.CrossRefPubMedGoogle Scholar
  42. 42.
    Conway, J. F., Cheng, N., Zlotnick, A., Wingfield, P. T., Stahl, S. J., and Steven, A. C. (1997) Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386, 91–94.CrossRefPubMedGoogle Scholar
  43. 43.
    Frank, J., Zhu, J., Penczek, P., Li, Y., Srivastava, S., Verschoor, A., et al. (1995) Model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376, 441–444.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhou, Z. H., Chiu, W., Haskell, K., Spears, H., Jr., Jakana, J., Rixon, F. J., and Scott, L. R. (1998) Refinement of herpesvirus B-capsid structure on parallel supercomputers. Biophys. J. 74, 576–588.CrossRefPubMedGoogle Scholar
  45. 45.
    Baker, T. S. and Johnson, J. E. (1996) Low resolution meets high: towards a resolution continuum from cells to atoms. Curr. Opin. Struct. Biol. 6, 585–594.CrossRefPubMedGoogle Scholar
  46. 46.
    Stewart, P. L., Fuller, S. D., and Burnett, R. M. (1993) Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J. 12, 2589–2599.PubMedGoogle Scholar
  47. 47.
    Cheng, R. H., Reddy, V. S., Olson, N. H., Fisher, A. J., Baker, T. S., and Johnson, J. E. (1994) Functional implications of quasi-equivalence in a T = 3 icosahedral animal virus established by cryo-electron microscopy and X-ray crystallography. Structure 2, 271–282.CrossRefPubMedGoogle Scholar
  48. 48.
    Smith, T. J., Chase, E. S., Schmidt, T. J., Olson, N. H., and Baker, T. S. (1996) Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature 383, 350–354.CrossRefPubMedGoogle Scholar
  49. 49.
    Cheng, R. H., Kuhn, R. J., Olson, N. H., Rossmann, M. G., Choi, H. K., Smith, T. J., and Baker, T. S. (1995) Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80, 621–630.CrossRefPubMedGoogle Scholar
  50. 50.
    Grimes, J. M., Jakana, J., Ghosh, M., Basak, A. K., Roy, P., Chiu, W., Stuart, D. I., and Prasad, B. V. (1997) An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure 5, 885–893.CrossRefPubMedGoogle Scholar
  51. 51.
    Prasad, B. V. V., Hardy, M. E., Dokland, Bella, J., M., Rossmann, M. G., and Estes, M. K. (1999) X-ray crystallographic structure of the Norwalk virus capsid. Science, in press.Google Scholar
  52. 52.
    Ban, N., Freeborn, B., Nissen, P., Penczek, P., Grassucci, R. A., Sweet, R., et al. (1998) A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93, 1105–1115.CrossRefPubMedGoogle Scholar
  53. 53.
    Tao, Y., Olson, N. M., Xu, W., Anderson, D. L., Rossmann, M. G., and Baker, T. S. (1998) Assembly of tailed bacterial virus and its genome release studied in three-dimensions. Cell 95, 431–437.CrossRefPubMedGoogle Scholar
  54. 54.
    Estes, M. K., Graham, D. Y., and Mason, B. B. (1981) Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J. Virol. 39, 879–888.PubMedGoogle Scholar
  55. 55.
    Arias, C. F., Lopez, S., and Espejo, R. T. (1982) Gene protein products of SA11 simian rotavirus genome. J. Virol. 41, 42–50.PubMedGoogle Scholar
  56. 56.
    Zhou, Z., Crawford, S., and Estes, M. K. Personal communication.Google Scholar
  57. 57.
    Anthony, I. D., Bullivant, S., Dayal, S., Bellamy, A. R., and Berriman, J. A. (1991) Rotavirus spike structure and polypeptide composition. J. Virol. 65, 4334–4340.PubMedGoogle Scholar
  58. 58.
    Arias, C. F., Romero, P., Alvarez, V., and Lopez, S. (1996) Trypsin activation pathway of rotavirus infectivity. J. Virol. 70, 5832–5839.PubMedGoogle Scholar
  59. 59.
    Kaljot, K. T., Shaw, R. D., Rubin, D. H., and Greenberg, H. B. (1988) Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J. Virol. 62, 1136–1144.PubMedGoogle Scholar
  60. 60.
    Keljo, D. J., Kuhn, M., and Smith, A. (1988) Acidification of endosomes is not important for the entry of rotavirus into the cell. J. Pediatr. Gastroenterol. Nutr. 7, 257–263.CrossRefPubMedGoogle Scholar
  61. 61.
    Cohen, J. and Dobos, P. (1979) Cell free transcription and translation of rotavirus RNA. Biochem. Biophys. Res. Commun. 88, 791–796.CrossRefPubMedGoogle Scholar
  62. 62.
    Sabara, M., Ready, K. F. M., Frenchick, P. J., and Babiuk, L. A. (1987) Biochemical evidence for the oligomeric arrangement of bovine rotavirus nucleocapsid protein and its possible significance in the immunogenicity of this protein. J. Gen. Virol. 68, 123–133.CrossRefPubMedGoogle Scholar
  63. 63.
    Shen, S., Burke, B., and Desselberger, U. (1994) Rearrangement of the VP6 gene of a group A rotavirus in combination with a point mutation affecting trimer stability. J. Virol. 68, 1682–1688.PubMedGoogle Scholar
  64. 64.
    Tosser, G., Labbé, M., Bremont, M., and Cohen, J. (1992) Expression of the major capsid protein VP6 of group C rotavirus and synthesis of chimeric single-shelled particles by using recombinant baculoviruses. J. Virol. 66, 5825–5831.PubMedGoogle Scholar
  65. 65.
    Grimes, J., Basak, A. K., Roy, P., and Stuart, D. (1995) The crystal structure of bluetongue virus VP7. Nature 373, 167–170.CrossRefPubMedGoogle Scholar
  66. 66.
    Prasad, B. V. V. and Chiu, W. (1994) Structure of rotavirus. Curr. Top. Microbiol. Immunol. 185, 9–29.PubMedGoogle Scholar
  67. 67.
    Labbé, M., Charpilienne, A., Crawford, S. E., Estes, M. K., and Cohen, J. (1991) Expression of rotavirus VP2 produces empty corelike particles. J. Virol. 65, 2946–2952.PubMedGoogle Scholar
  68. 68.
    Crawford, S. E., Labbé, M., Cohen, J., Burroughs, M. H., Zhou, Y. J., and Estes, M. K. (1994) Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J. Virol. 68, 5945–5952.PubMedGoogle Scholar
  69. 69.
    Shaw, A. L., Samal, S. K., Subramanian, K., and Prasad, B. V. (1996) Structure of aquareovirus shows how the different geometries of the two layers of the capsid are reconciled to provide symmetrical interactions and stabilization. Structure 4, 957–967.CrossRefPubMedGoogle Scholar
  70. 70.
    Cheng, R. H., Caston, J. R., Wang, G. J., Gu, F., Smith, T. J., Baker, T. S., et al. (1994) Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimers. J. Mol. Biol. 244, 255–258.CrossRefPubMedGoogle Scholar
  71. 71.
    Valenzuela, S., Pizarro, J., Sandino, A. M., Vasquez, M., Fernandez, J., Hernandez, O., Patton, J., and Spencer, E. (1991) Photoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase. J. Virol. 65, 3964–3967.PubMedGoogle Scholar
  72. 72.
    Liu, M., Mattion, N. M., and Estes, M. K. (1992) Rotavirus VP3 expressed in insect cells possesses guanylyltransferase activity. Virology 188, 77–84.CrossRefPubMedGoogle Scholar
  73. 73.
    Chen, Z. G., Stauffacher, C., Li, Y., Schmidt, T., Bomu, W., Kamer, G., Shanks, M., Lomonossoff, G., and Johnson, J. E. (1989) Protein-RNA interactions in an icosahedral virus at 3.0 A resolution. Science 245, 154–159.CrossRefPubMedGoogle Scholar
  74. 74.
    Tsao, J., Chapman, M. S., Agbandje, M., Keller, W., Smith, K., Wu, H., Luo, M., Rossmann, M. G., and Compans, R. W. (1991) The three-dimensional structure of canine parvovirus and its functional implications. Science 251, 1456–1464CrossRefPubMedGoogle Scholar
  75. 75.
    McKenna, R., Xia, D., Willingmann, P., Ilag, L. L., Krishnaswamy, S., Rossmann, M. G., Olson, N. H., Baker, T. S., and Incardona, N. L. (1992) Atomic structure of single-stranded DNA bacteriophage phi X174 and its functional implications. Nature 355, 137–143.CrossRefPubMedGoogle Scholar
  76. 76.
    Fisher, A. J. and Johnson, J. E. (1993) Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature 361, 176–179.CrossRefPubMedGoogle Scholar
  77. 77.
    Larson, S. B., Koszelak, S., Day, J., Greenwood, A., Dodds, J. A., and McPherson, A. (1993) Double-helical RNA in satellite tobacco mosaic virus. Nature 361, 179–182.CrossRefPubMedGoogle Scholar
  78. 78.
    Labbé, M., Baudoux, P., Charpilienne, A., Poncet, D., and Cohen, J. (1994) Identification of the nucleic acid binding domain of the rotavirus VP2 protein. J. Gen. Virol. 75, 3423–3430.CrossRefPubMedGoogle Scholar
  79. 79.
    Cohen, J. (1977) Ribonucleic acid polymerase activity associated with purified calf rotavirus. J. Gen. Virol. 36, 395–402.CrossRefPubMedGoogle Scholar
  80. 80.
    Zeng, C. Q., Estes, M. K., Charpilienne, A., and Cohen, J. (1998) The N terminus of rotavirus VP2 is necessary for encapsidation of VP1 and VP3. J. Virol. 72, 201–208.PubMedGoogle Scholar
  81. 81.
    Zeng, C. Q., Labbé, M., Cohen, J., Prasad, B. V. V., Chen, D., Ramig, R. F., and Estes, M. K. (1994) Characterization of rotavirus VP2 particles. Virology 201, 55–65.CrossRefPubMedGoogle Scholar
  82. 82.
    Bartlett, N. M., Gillies, S. C., Bullivant, S., and Bellamy, A. R. (1974) Electron microscopy study of reovirus reaction cores. J. Virol. 14, 315–326.PubMedGoogle Scholar
  83. 83.
    Dryden, K. A., Farsetta, D. L., Wang, G., Keegan, J. M., Fields, B. N., Baker, T. S., and Nibert, M. L. (1998) Internal structures containing transcriptase-related proteins in top component particles of mammalian orthoreovirus. Virology 245, 33–46.CrossRefPubMedGoogle Scholar
  84. 84.
    Prasad, B. V. V., Yamaguchi, S., and Roy, P. (1992) Three-dimensional structure of single-shelled bluetongue virus. J. Virol. 66, 2135–2142.PubMedGoogle Scholar
  85. 85.
    Gottlieb, P., Strassman, J., Qiao, X. Y., Frucht, A., and Mindich, L. (1990) In vitro replication, packaging, and transcription of the segmented double-stranded RNA genome of bacteriophage phi 6: studies with procapsids assembled from plasmid-encoded proteins. J. Bacteriol. 172, 5774–5782.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • B. V. Venkataram Prasad
    • 1
  • Mary K. Estes
    • 2
  1. 1.Verna and Marrs Department of Biochemistry and W. M. Keck Center for Computational BiologyBaylor College of MedicineHouston
  2. 2.Division of Molecular VirologyBaylor College of MedicineHouston

Personalised recommendations