Skip to main content

Site-Directed Mutagenesis to Determine Structure Function Relationships in Streptococcus pneumoniae Penicillin-Binding Protein Genes

  • Protocol
Antibiotic Resistence

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 48))

Abstract

βlactam resistance in clinical isolates of Streptococcus pneumoniae arises by only one route, the reduction of the affinity of the penicillin-binding proteins (PBPs) for βlactams. The pneumococcus possesses five high molecular weight PBPs (PBP1A, 1B, 2A, 2B, and 2X) which are involved in the final crosslinking stages of peptidoglycan synthesis in the bacterial cell wall. βlactam antibiotics are structural analogs of the natural cell wall peptide substrates of the PBPs. The antibiotic binds to the active site within the transpeptidase domain of these PBPs, forming an acyl-enzyme complex which is far more stable than the transient enzyme-substrate complex that normally occurs. In this way, the βlactams block the crosslinking in what is essentially an irreversible manner. The result is a cessation in cell growth and, depending on the PBP inhibited, lysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dowson, C. G., Hutchison, A., Brannigan, J. A., George, R. C., Hansman, D., Liñares, J., Tomasz, A., Maynard Smith, J., and Spratt, B. G. (1989) Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 86, 8842–8846.

    Article  PubMed  CAS  Google Scholar 

  2. Laible, G., Spratt, B. G., and Hakenbeck, R. (1991) Interspecies recombination events during the evolution of altered PBP2X genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol. Microbiol. 5, 1993–2002.

    Article  PubMed  CAS  Google Scholar 

  3. Martin, C., Briese, T., and Hakenbeck, R. (1992) Nucleotide sequences of genes encoding penicillin-binding proteins from Streptococcus pneumoniae and Streptococcus oralis with high homology to Escherichia coli penicillin-binding proteins 1A and 1B. J. Bacteriol. 174, 4517–4523.

    PubMed  CAS  Google Scholar 

  4. Sibold, C., Henrichsen, J., Koenig, A., Martin, C., Chalkley, L., and Hakenbeck, R. (1994) Mosaic pbpX genes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol. Microbiol. 12, 1013–1023.

    Article  PubMed  CAS  Google Scholar 

  5. Coffey, T. J., Daniels, M., McDougal, K. K., Dowson, C. G., Tenover, F. C., and Spratt, B. G. (1995) Genetic analysis of clinical isolates of Streptococcus pneumoniae with high-level resistance to expanded-spectrum cephalosporins. Antimicrob. Agents Chemother. 39, 1306–1313.

    PubMed  CAS  Google Scholar 

  6. Dowson, C. G., Johnson, A. P., Cercenado, E., and George, R. C. (1994) Genetics of oxacillin resistance in clinical isolates of Streptococcus pneumoniae that are oxacillin resistant and penicillin susceptible. Antimicrob. Agents Chemother. 38, 49–53.

    PubMed  CAS  Google Scholar 

  7. Muñoz, R., Dowson, C. G., Daniels, M., Coffey, T. J., Martin, C., Hakenbeck, R., and Spratt, B. G. (1992) Genetics of resistance to third-generation cephalosporins in clinical isolates of Streptococcus pneumoniae. Mol. Microbiol. 6, 2461–2465.

    Article  PubMed  Google Scholar 

  8. Barcus, V. A., Ghanekar, K., Yeo, M., Coffey, T. J., and Dowson, C. G. (1995) Genetics of high level penicillin resistance in clinical isolates of Streptococcus pneumoniae. FEMS Microbial. Lett. 126, 299–304.

    Article  CAS  Google Scholar 

  9. Grebe, T. and Hakenbeck, R. (1996) Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of βlactam antibiotics. Antimicrob. Agents Chemother. 40, 829–834.

    PubMed  CAS  Google Scholar 

  10. Laible, G. and Hakenbeck, R. (1987) Penicillin-binding proteins in βlactamresistant laboratory mutants of Streptococcus pneumoniae. Mol. Microbiol. 1, 355–363.

    Article  PubMed  CAS  Google Scholar 

  11. Reichmann, P., Koenig, A., Liñares, J., Alcaide, F., Tenover, F. C., McDougal, L., Swidinski, S., and Hakenbeck, R. (1997) A global gene pool for high-level cephalosporin resistance in commensal Streptococcus species and Streptococcus pneumoniae. J. Inf. Dis. 176, 1001–1012.

    Article  CAS  Google Scholar 

  12. Hakenbeck, R., Koenig, A., Kern, I., Van Der Linden, M., Keck, W., Billot-Klein, D., LeGrand, R., Schoot, B., and Gutmann, L. (1998) Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level βlactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J. Bacteriol. 180, 1831–1840.

    PubMed  CAS  Google Scholar 

  13. Dowson, C. G., Coffey, T. J., Kell, C., and Whiley, R. A. (1993) Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S pneumoniae.. Mol. Microbiol. 9, 635–643.

    Article  PubMed  CAS  Google Scholar 

  14. Smith, A. M. and Klugman, K. P. (1998) Alterations in PBP 1A essential for highlevel penicillin resistance. Antimicrob. Agents Chemother. 42, 1329–1333.

    PubMed  CAS  Google Scholar 

  15. Asahi, Y. and Ubukata, K. (1998) Association of a Thr-371 substitution in a conserved amino acid motif of Penicillin-Binding Protein 1A with penicillin resistance of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 42, 2267–2273.

    PubMed  CAS  Google Scholar 

  16. Palzkill, T. and Botstein, D. (1992a) Probing βlactamase structure and function using random replacement mutagenesis. Proteins: Struct., Funct., Genet. 14, 29–44.

    Article  CAS  Google Scholar 

  17. Palzkill, T. and Botstein, D. (1992b) Identification of amino acid substitutions that alter the substrate specificity of TEM-1 βlactamase. J. Bacteriol. 174, 5237–5243.

    PubMed  CAS  Google Scholar 

  18. Palzkill, T., Le, Q.-Q., Venkatachalam, K. V., LaRocco, M., and Ocera, H. (1994) Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of βlactamase. Mol. Microbiol. 12, 217–229.

    Article  PubMed  CAS  Google Scholar 

  19. Huang, W., Petrosino, J., Hirsch, M., Shenkin, P. S., and Palzkill, T. (1996) Amino acid determinants of βlactamase structure and activity. J. Mol. Biol. 258, 688–703.

    Article  PubMed  CAS  Google Scholar 

  20. Higuchi, R., Krummel, B., and Saiki, R. K. (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351–7367.

    Article  PubMed  CAS  Google Scholar 

  21. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Sitedirected mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.

    Article  PubMed  CAS  Google Scholar 

  22. Landt, O., Grunert, H.-P., and Hahn, U. (1990) A general method for site-directed mutagenesis using the polymerase chain reaction. Gene 96, 125–128.

    Article  PubMed  CAS  Google Scholar 

  23. Sarkar, G. and Sommer, S. S. (1990) The “megaprimer” method of site-directed mutagenesis. BioTechniques 8, 404–407.

    PubMed  CAS  Google Scholar 

  24. Picard, V., Ersdal-Badju, E., Lu, A., and Bock, S. C. (1994) A rapid and efficient one-tube PCR-based mutagenesis technique using Pfu DNA polymerase. Nucleic Acids Res. 22, 2587–2591.

    Article  PubMed  CAS  Google Scholar 

  25. Ke, S. H. and Madison, E. L. (1997) Rapid and efficient site-directed mutagenesis by single-tube’ megaprimer’ PCR method. Nucleic Acids Res. 25, 3371–3372.

    Article  PubMed  CAS  Google Scholar 

  26. Seraphin, B., and Kandels-Lewis, S. (1996) An efficient PCR mutagenesis strategy without gel purification step that is amenable to purification. Nucleic Acids Res. 24, 3276–3277.

    Article  PubMed  CAS  Google Scholar 

  27. Barik, S. and Galinski, M. S. (1991) “Megaprimer” method of PCR: increased template concentration improves yield. BioTechniques 10, 489–490.

    PubMed  CAS  Google Scholar 

  28. Smith, A. M. and Klugman, K. P. (1997) “Megaprimer” method of PCR-based mutagenesis: the concentration of megaprimer is a critical factor. BioTechniques 22, 438–442.

    PubMed  CAS  Google Scholar 

  29. Datta, A. K. (1995) Efficient amplification using’ megaprimer’ by asymmetric polymerase chain reaction. Nucleic Acids Res. 23, 4530–4531.

    Article  PubMed  CAS  Google Scholar 

  30. Hemsley, A., Arnheim, N., Toney, M. D., Cortopassi, G., and Galas, D. J. (1989) A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res. 17, 6545–6551.

    Article  PubMed  CAS  Google Scholar 

  31. Eisinger, D. P. and Trumpower, B. L. (1997) Long-inverse PCR to generate regional peptide libraries by codon mutagenesis. BioTechniques 22, 250–254.

    PubMed  CAS  Google Scholar 

  32. Hidajat, R. and McNicol, P. (1997) Primer-directed mutagenesis of an intact plasmid by using Pwo DNA polymerase in long distance inverse PCR. BioTechniques 22, 32–34.

    PubMed  CAS  Google Scholar 

  33. Dorrell, N., Gyselman, V. G., Foynes, S., Li, S.-R., and Wren, B. W. (1996) Improved efficiency of inverse PCR mutagenesis. BioTechniques 21, 604–608.

    PubMed  CAS  Google Scholar 

  34. Tomasz, A. and Hotchkiss, R. D. (1964) Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc. Natl. Acad. Sci. USA 51, 480–487.

    Article  PubMed  CAS  Google Scholar 

  35. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 1.53–1.83.

    Google Scholar 

  36. Pozzi, G., Masala, L., Iannelli, F., Manganelli, R., HÅvarstein, L. S., Piccoli, L., Simon, D., and Morrison, D. A. (1996) Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. J. Bacteriol. 178, 6087–6090.

    PubMed  CAS  Google Scholar 

  37. Whatmore, A. M., Barcus, V. A., and Dowson, C. G. (1999) Genetic diversity of the streptococcal competence (com) gene locus. J. Bacteriol. 181, 3144–3154.

    PubMed  CAS  Google Scholar 

  38. HÅvarstein, L. S., Coomaraswamy, G., and Morrison, D. A. (1995) An unmodified heptadecapeptide induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92, 11,140–11,144.

    Article  PubMed  Google Scholar 

  39. Barretino, D., Feigenbutz, M., Valcarcel, R., and Stunnenberg, H. G. (1993) Improved methods for PCR-mediated site-directed mutagenesis. Nucleic Acids Res. 22, 541–542.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 The Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Barcus, V.A., Dowson, C.G. (2001). Site-Directed Mutagenesis to Determine Structure Function Relationships in Streptococcus pneumoniae Penicillin-Binding Protein Genes. In: Gillespie, S.H. (eds) Antibiotic Resistence. Methods in Molecular Medicine™, vol 48. Humana Press. https://doi.org/10.1385/1-59259-077-2:245

Download citation

  • DOI: https://doi.org/10.1385/1-59259-077-2:245

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-777-9

  • Online ISBN: 978-1-59259-077-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics