Site-Directed Mutagenesis to Determine Structure Function Relationships in Streptococcus pneumoniae Penicillin-Binding Protein Genes

  • Victoria A. Barcus
  • Christopher G. Dowson
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 48)

Abstract

βlactam resistance in clinical isolates of Streptococcus pneumoniae arises by only one route, the reduction of the affinity of the penicillin-binding proteins (PBPs) for βlactams. The pneumococcus possesses five high molecular weight PBPs (PBP1A, 1B, 2A, 2B, and 2X) which are involved in the final crosslinking stages of peptidoglycan synthesis in the bacterial cell wall. βlactam antibiotics are structural analogs of the natural cell wall peptide substrates of the PBPs. The antibiotic binds to the active site within the transpeptidase domain of these PBPs, forming an acyl-enzyme complex which is far more stable than the transient enzyme-substrate complex that normally occurs. In this way, the βlactams block the crosslinking in what is essentially an irreversible manner. The result is a cessation in cell growth and, depending on the PBP inhibited, lysis.

Keywords

Glycerol Filtration Phenol Agar Codon 

References

  1. 1.
    Dowson, C. G., Hutchison, A., Brannigan, J. A., George, R. C., Hansman, D., Liñares, J., Tomasz, A., Maynard Smith, J., and Spratt, B. G. (1989) Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 86, 8842–8846.PubMedCrossRefGoogle Scholar
  2. 2.
    Laible, G., Spratt, B. G., and Hakenbeck, R. (1991) Interspecies recombination events during the evolution of altered PBP2X genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol. Microbiol. 5, 1993–2002.PubMedCrossRefGoogle Scholar
  3. 3.
    Martin, C., Briese, T., and Hakenbeck, R. (1992) Nucleotide sequences of genes encoding penicillin-binding proteins from Streptococcus pneumoniae and Streptococcus oralis with high homology to Escherichia coli penicillin-binding proteins 1A and 1B. J. Bacteriol. 174, 4517–4523.PubMedGoogle Scholar
  4. 4.
    Sibold, C., Henrichsen, J., Koenig, A., Martin, C., Chalkley, L., and Hakenbeck, R. (1994) Mosaic pbpX genes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol. Microbiol. 12, 1013–1023.PubMedCrossRefGoogle Scholar
  5. 5.
    Coffey, T. J., Daniels, M., McDougal, K. K., Dowson, C. G., Tenover, F. C., and Spratt, B. G. (1995) Genetic analysis of clinical isolates of Streptococcus pneumoniae with high-level resistance to expanded-spectrum cephalosporins. Antimicrob. Agents Chemother. 39, 1306–1313.PubMedGoogle Scholar
  6. 6.
    Dowson, C. G., Johnson, A. P., Cercenado, E., and George, R. C. (1994) Genetics of oxacillin resistance in clinical isolates of Streptococcus pneumoniae that are oxacillin resistant and penicillin susceptible. Antimicrob. Agents Chemother. 38, 49–53.PubMedGoogle Scholar
  7. 7.
    Muñoz, R., Dowson, C. G., Daniels, M., Coffey, T. J., Martin, C., Hakenbeck, R., and Spratt, B. G. (1992) Genetics of resistance to third-generation cephalosporins in clinical isolates of Streptococcus pneumoniae. Mol. Microbiol. 6, 2461–2465.PubMedCrossRefGoogle Scholar
  8. 8.
    Barcus, V. A., Ghanekar, K., Yeo, M., Coffey, T. J., and Dowson, C. G. (1995) Genetics of high level penicillin resistance in clinical isolates of Streptococcus pneumoniae. FEMS Microbial. Lett. 126, 299–304.CrossRefGoogle Scholar
  9. 9.
    Grebe, T. and Hakenbeck, R. (1996) Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of βlactam antibiotics. Antimicrob. Agents Chemother. 40, 829–834.PubMedGoogle Scholar
  10. 10.
    Laible, G. and Hakenbeck, R. (1987) Penicillin-binding proteins in βlactamresistant laboratory mutants of Streptococcus pneumoniae. Mol. Microbiol. 1, 355–363.PubMedCrossRefGoogle Scholar
  11. 11.
    Reichmann, P., Koenig, A., Liñares, J., Alcaide, F., Tenover, F. C., McDougal, L., Swidinski, S., and Hakenbeck, R. (1997) A global gene pool for high-level cephalosporin resistance in commensal Streptococcus species and Streptococcus pneumoniae. J. Inf. Dis. 176, 1001–1012.CrossRefGoogle Scholar
  12. 12.
    Hakenbeck, R., Koenig, A., Kern, I., Van Der Linden, M., Keck, W., Billot-Klein, D., LeGrand, R., Schoot, B., and Gutmann, L. (1998) Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level βlactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J. Bacteriol. 180, 1831–1840.PubMedGoogle Scholar
  13. 13.
    Dowson, C. G., Coffey, T. J., Kell, C., and Whiley, R. A. (1993) Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S pneumoniae.. Mol. Microbiol. 9, 635–643.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith, A. M. and Klugman, K. P. (1998) Alterations in PBP 1A essential for highlevel penicillin resistance. Antimicrob. Agents Chemother. 42, 1329–1333.PubMedGoogle Scholar
  15. 15.
    Asahi, Y. and Ubukata, K. (1998) Association of a Thr-371 substitution in a conserved amino acid motif of Penicillin-Binding Protein 1A with penicillin resistance of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 42, 2267–2273.PubMedGoogle Scholar
  16. 16.
    Palzkill, T. and Botstein, D. (1992a) Probing βlactamase structure and function using random replacement mutagenesis. Proteins: Struct., Funct., Genet. 14, 29–44.CrossRefGoogle Scholar
  17. 17.
    Palzkill, T. and Botstein, D. (1992b) Identification of amino acid substitutions that alter the substrate specificity of TEM-1 βlactamase. J. Bacteriol. 174, 5237–5243.PubMedGoogle Scholar
  18. 18.
    Palzkill, T., Le, Q.-Q., Venkatachalam, K. V., LaRocco, M., and Ocera, H. (1994) Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of βlactamase. Mol. Microbiol. 12, 217–229.PubMedCrossRefGoogle Scholar
  19. 19.
    Huang, W., Petrosino, J., Hirsch, M., Shenkin, P. S., and Palzkill, T. (1996) Amino acid determinants of βlactamase structure and activity. J. Mol. Biol. 258, 688–703.PubMedCrossRefGoogle Scholar
  20. 20.
    Higuchi, R., Krummel, B., and Saiki, R. K. (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16, 7351–7367.PubMedCrossRefGoogle Scholar
  21. 21.
    Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Sitedirected mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.PubMedCrossRefGoogle Scholar
  22. 22.
    Landt, O., Grunert, H.-P., and Hahn, U. (1990) A general method for site-directed mutagenesis using the polymerase chain reaction. Gene 96, 125–128.PubMedCrossRefGoogle Scholar
  23. 23.
    Sarkar, G. and Sommer, S. S. (1990) The “megaprimer” method of site-directed mutagenesis. BioTechniques 8, 404–407.PubMedGoogle Scholar
  24. 24.
    Picard, V., Ersdal-Badju, E., Lu, A., and Bock, S. C. (1994) A rapid and efficient one-tube PCR-based mutagenesis technique using Pfu DNA polymerase. Nucleic Acids Res. 22, 2587–2591.PubMedCrossRefGoogle Scholar
  25. 25.
    Ke, S. H. and Madison, E. L. (1997) Rapid and efficient site-directed mutagenesis by single-tube’ megaprimer’ PCR method. Nucleic Acids Res. 25, 3371–3372.PubMedCrossRefGoogle Scholar
  26. 26.
    Seraphin, B., and Kandels-Lewis, S. (1996) An efficient PCR mutagenesis strategy without gel purification step that is amenable to purification. Nucleic Acids Res. 24, 3276–3277.PubMedCrossRefGoogle Scholar
  27. 27.
    Barik, S. and Galinski, M. S. (1991) “Megaprimer” method of PCR: increased template concentration improves yield. BioTechniques 10, 489–490.PubMedGoogle Scholar
  28. 28.
    Smith, A. M. and Klugman, K. P. (1997) “Megaprimer” method of PCR-based mutagenesis: the concentration of megaprimer is a critical factor. BioTechniques 22, 438–442.PubMedGoogle Scholar
  29. 29.
    Datta, A. K. (1995) Efficient amplification using’ megaprimer’ by asymmetric polymerase chain reaction. Nucleic Acids Res. 23, 4530–4531.PubMedCrossRefGoogle Scholar
  30. 30.
    Hemsley, A., Arnheim, N., Toney, M. D., Cortopassi, G., and Galas, D. J. (1989) A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res. 17, 6545–6551.PubMedCrossRefGoogle Scholar
  31. 31.
    Eisinger, D. P. and Trumpower, B. L. (1997) Long-inverse PCR to generate regional peptide libraries by codon mutagenesis. BioTechniques 22, 250–254.PubMedGoogle Scholar
  32. 32.
    Hidajat, R. and McNicol, P. (1997) Primer-directed mutagenesis of an intact plasmid by using Pwo DNA polymerase in long distance inverse PCR. BioTechniques 22, 32–34.PubMedGoogle Scholar
  33. 33.
    Dorrell, N., Gyselman, V. G., Foynes, S., Li, S.-R., and Wren, B. W. (1996) Improved efficiency of inverse PCR mutagenesis. BioTechniques 21, 604–608.PubMedGoogle Scholar
  34. 34.
    Tomasz, A. and Hotchkiss, R. D. (1964) Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc. Natl. Acad. Sci. USA 51, 480–487.PubMedCrossRefGoogle Scholar
  35. 35.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 1.53–1.83.Google Scholar
  36. 36.
    Pozzi, G., Masala, L., Iannelli, F., Manganelli, R., HÅvarstein, L. S., Piccoli, L., Simon, D., and Morrison, D. A. (1996) Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. J. Bacteriol. 178, 6087–6090.PubMedGoogle Scholar
  37. 37.
    Whatmore, A. M., Barcus, V. A., and Dowson, C. G. (1999) Genetic diversity of the streptococcal competence (com) gene locus. J. Bacteriol. 181, 3144–3154.PubMedGoogle Scholar
  38. 38.
    HÅvarstein, L. S., Coomaraswamy, G., and Morrison, D. A. (1995) An unmodified heptadecapeptide induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92, 11,140–11,144.PubMedCrossRefGoogle Scholar
  39. 39.
    Barretino, D., Feigenbutz, M., Valcarcel, R., and Stunnenberg, H. G. (1993) Improved methods for PCR-mediated site-directed mutagenesis. Nucleic Acids Res. 22, 541–542.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Victoria A. Barcus
    • 1
  • Christopher G. Dowson
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations