Skip to main content

Antibodies for Inflammatory Disease

Effector Cells

  • Protocol
Diagnostic and Therapeutic Antibodies

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 40))

Abstract

Their inherent specificity makes antibodies attractive immunotherapeutic agents. Definition of appropriate therapeutic strategies requires parallel identification of potential target molecules and the immunotherapeutic mechanisms to be recruited by antibodies targeting these molecules. Regardless of the target antigen, antibodies may modify immune responses by:

  1. 1.

    Killing target cells (cytotoxic or depleting antibodies);

  2. 2.

    Blocking molecular interactions;

  3. 3.

    Modulating target molecules from the surface of cells; or

  4. 4.

    Modifying cell function as a consequence of signal transduction by ligated molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chambers, C. A. and Alison, J. P. (1997) Co-stimulation in T cell responses. Curr. Opin. Immunol.9, 396–404.

    CAS  Google Scholar 

  2. Lenschow, D. J., Walunas, T. L., et al. (1996) CD28/B7 system of T cell costimulation. Ann. Rev. Immunol.14, 233–258.

    CAS  Google Scholar 

  3. Saito, T. (1998) Negative regulation of T cell activation. Curr. Opin. Immunol.10, 313–321.

    CAS  Google Scholar 

  4. Grewal, I. S., Foellmer, H. G., et al. (1996) Requirement for CD40 ligand in costimulation induction, T cell activation and experimental allergic encephalo-myelitis. Science273, 1864–1867.

    CAS  Google Scholar 

  5. Yang, Y. and Wilson, J. M. (1996) CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40. Science273, 1862–1864.

    CAS  Google Scholar 

  6. Acha-Orbea, H., Mitchell, D. J., et al. (1988) Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell54, 263–273.

    CAS  Google Scholar 

  7. Acha-Orbea, H. (1993) T-cell receptors in autoimmune disease, in Monoclonal Antibodies and Peptide Therapy in Autoimmune Diseases, vol. 59 (Bach, J.-F., ed.), Marcel Dekker, New York, pp. 131–142.

    Google Scholar 

  8. Aharoni, R., Teitelbaum, D., et al. (1991) Immunomodulation of experimental allergic encephalomyelitis by antibodies to the antigen-Ia complex. Nature351, 147–150.

    CAS  Google Scholar 

  9. Waldmann, T. A. (1993) The IL-2/IL-2 receptor system: a target for rational immune intervention. Immunol. Today14, 264–269.

    CAS  Google Scholar 

  10. Van Gelder, T. and Weimar, W. (1997) Potential of anti-interleukin-2 receptor monoclonal antibodies in solid organ transplantation. Biodrugs8, 46–55.

    Google Scholar 

  11. Kuttler, B., Kauert, C., et al. (1997) Anti-CD25/CsA therapy induced a CD4+ T cell-mediated tolerance in BB/OK rats. Immunobiology197, 243.

    Google Scholar 

  12. Kyle, V., Coughlan, R. J., et al. (1989) Beneficial effect of monoclonal antibody to interleukin 2 receptor on activated T cells in rheumatoid arthritis. Ann. Rheumatic Dis.48, 428–429.

    CAS  Google Scholar 

  13. Kirkham, B., Pitzalis, C., et al. (1991) Monoclonal antibody therapy in rheumatoid arthritis: the clinical and immunological effects of a CD7 monoclonal antibody. Br. J. Rheumatol.30, 459–463.

    CAS  Google Scholar 

  14. Kirkham, B., Thien, F., et al. (1992) Chimeric CD7 monoclonal antibody therapy in rheumatoid arthritis. J. Rheumatol.19, 1348–1352.

    CAS  Google Scholar 

  15. Williams, I. R. and Perry, L. L. (1985) A double determinant sandwich immu-noassay for quantitation of serum monoclonal anti-I-A antibody. J. Immunol. Methods85, 279–294.

    CAS  Google Scholar 

  16. Sayegh, M. H., Akalin, E., et al. (1995) CD28-B7 blockade after alloantigenic challenge in vivo inhibits Th1 cytokines but spares Th2. J. Exp. Med.181, 1869–1874.

    CAS  Google Scholar 

  17. Racke, M. K., Scott, D. E., et al. (1995) Distinct roles for B7-1 (CD-80) and B7-2 (CD-86) in the initiation of experimental allergic encephalomyelitis. J. Clin. Invest.96, 2195–2203.

    CAS  Google Scholar 

  18. Vladutiu, A. O. (1991) Treatment of autoimmune diseases with antibodies to class II major histocompatibility complex antigens. Clin. Immunol. Immunopathol.61, 1–17.

    CAS  Google Scholar 

  19. Fultz, M., Finkelman, F. D., et al. (1984) In vivo administration of anti-I-A antibody induces the internalization of B cell surface I-A and I-E without affecting the expression of surface immunoglobulin. J. Immunol.133, 91–97.

    CAS  Google Scholar 

  20. Kruisbeek, A. M., Titus, J. A., et al. (1985) In vivo treatment with monoclonal anti-I-A antibodies: disappearance of splenic antigen-presenting cell function concomitant with modulation of splenic cell surface I-A and I-E antigens. J. Immunol.134, 3605–3614.

    CAS  Google Scholar 

  21. Wade, W. F., Davoust, J., et al. (1993) Structural compartmentalization of MHC class II signaling function. Immunol. Today14, 539–545.

    CAS  Google Scholar 

  22. Scholl, P. R. and Geha, R. S. (1994) MHC class II signalling in B-cell activation. Immunol. Today15, 418–422.

    CAS  Google Scholar 

  23. Smith, R. M., Morgan, A., et al. (1994) Anti-class II MHC antibodies prevent and treat EAE without APC depletion. Immunology83, 1–8.

    CAS  Google Scholar 

  24. Constant, S., Pfeiffer, C., et al. (1995) Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+T cells. J. Exp. Med.182, 1591–1596.

    CAS  Google Scholar 

  25. Waldmann, H. and Cobbold, S. (1998) How do monoclonal antibodies induce tolerance? A role for infectious tolerance? Ann. Rev. Immunol.16, 619–644.

    CAS  Google Scholar 

  26. Lockwood, C. M., Thiru, S., et al. (1993) Long-term remission of intractable systemic vasculitis with monoclonal antibody therapy. Lancet341, 1620–1622.

    CAS  Google Scholar 

  27. Lockwood, C. M., Thiru, S., Stewart, S. (1996) Treatment of refractory Wegener’s granulomatosis with humanized monoclonal antibodies. QJM89, 903–912.

    CAS  Google Scholar 

  28. Isaacs, J. D., Burrows, N., Wing, M., et al. (1997) Humanized anti-CD4 monoclonal antibody therapy of autoimmune and inflammatory disease. Clin. Exp. Immunol.110, 158–166.

    CAS  Google Scholar 

  29. Marrack, P., Endres, R., et al. (1983) The major histocompatibility complex-restricted antigen receptor on T-cells. II. Role of the L3T4 product. J. Exp. Med.158, 1077–1091.

    CAS  Google Scholar 

  30. Rudd, C. E., Trevillyan, J. M., et al. (1988) The CD4 receptor is complexed in detergent lysates to a protein-tyrosin kinase (pp58) from human T lymphocytes. Proc. Natl. Acad. Sci. USA85, 190–194.

    Google Scholar 

  31. Bartholomew, M., Brett, S., et al. (1995) Functional analysis of the effects of fully humanized anti-CD4 antibody on resting and activated human T cells. Immunology85, 41–48.

    CAS  Google Scholar 

  32. Bank, I. and Chess, L. (1985) Perturbation of the T4 molecules transmits a negative signal in T-cells. J. Exp. Med.162, 1294–1303.

    CAS  Google Scholar 

  33. Isaacs, J. D. (1999) Does immunotherapy have a role? Questions and Uncertainties in Rheumatology (Bird, H. and Snaith, M., eds.), Blackwell Science, Oxford, UK, pp. 207–228.

    Google Scholar 

  34. Chatenoud, L., Thervet, E., et al. (1994) Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl. Acad. Sci. USA91, 123–127.

    CAS  Google Scholar 

  35. Bolt, S., Routledge, E., et al. (1993) The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur. J. Immunol.23, 403–411.

    CAS  Google Scholar 

  36. Routledge, E. G., Falconer, M. E., et al. (1995) The effect of aglycosylation on the immunogenicity of a humanized therapeutic CD3 monoclonal antibody. Transplantation60, 847–853.

    CAS  Google Scholar 

  37. Harding, F. A., McArthur, J. G., et al. (1992) CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature356, 607–609.

    CAS  Google Scholar 

  38. Jenkins, M. K. (1994) The ups and downs of T cell costimulation. Immunity1, 443–446.

    CAS  Google Scholar 

  39. Walunas, T. L., Lenschow, D. J., et al. (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity1, 405–413.

    CAS  Google Scholar 

  40. Karandikar, N. J., Vanderlugt, C. L., et al. (1996) CTLA-4: a negative regulator of autoimmune disease. J. Exp. Med.184, 783–788.

    CAS  Google Scholar 

  41. Larsen, C. P., Elwood, E. T., et al. (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature381, 434–438.

    CAS  Google Scholar 

  42. Khoury, S. J., Akalin, E., et al. (1995) CD28-B7 costimulatory blockade by CTLA4Ig prevents actively induced experimental autoimmune encephalomyeli-tis and inhibits Th1 but spares Th2 cytokines in the central nervous system. J. Immunol.155, 4521–4524.

    CAS  Google Scholar 

  43. Akalin, E., Chandraker, A., et al. (1996) CD28-B7 T cell costimulatory blockade by CTLA4Ig in the rat renal allograft model. Transplantation62, 1942–1945.

    CAS  Google Scholar 

  44. Kuchroo, V. K., Das, M. P., et al. (1995) B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell80, 707–718.

    CAS  Google Scholar 

  45. Lenschow, D. J., Ho, S. C., et al. (1995) Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J. Exp. Med.181, 1145–1155.

    CAS  Google Scholar 

  46. Vanderlugt, C. L., Karandikar, N. J., et al. (1997) Treatment with intact anti-B7-1 mAb during disease remission enhances epitope spreading and exacerbates relapses in R-EAE. J. Neuroimmunol.79, 113–118.

    CAS  Google Scholar 

  47. Lanier, L. L., O’Fallon, S., et al. (1995) CD80 (B7) and CD86 (B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J. Immunol.154, 97–105.

    CAS  Google Scholar 

  48. Ghiotto-Ragueneau, M., Battifora, M., et al. (1996) Comparison of CD28-B7.1 and B7.2 functional interaction in resting human T cells, Phosphatidylinositol 3-kinase association to CD28 and cytokine production. Eur. J. Immunol.26, 34–41.

    CAS  Google Scholar 

  49. Nunes, J. A., Battifora, M., et al. (1996) CD28 signal transduction pathways. A comparison of B7-1 and B7-2 regulation of the MAP kinases: ERK2 and Jun kinases. Mol. Immunol.33, 63–70.

    CAS  Google Scholar 

  50. Hirokawa, M., Kuroki, J., et al. (1996) Transmembrane signaling through CD80 (B7-1) induces growth arrest and cell spreading of human B lymphocytes accompanied by protein tyrosine phosphorylation. Immunol. Lett.50, 95–98.

    CAS  Google Scholar 

  51. Jeannin, P., Delneste, Y., et al. (1997) CD86 (B7-2) on human B cells. J. Biol. Chem.25, 15,613–15,619.

    Google Scholar 

  52. Freeman, G. J., Boussiotis, V. A., et al. (1995) B7-1 and B7-2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. Immunity2, 523–532.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Smith, R. (2000). Antibodies for Inflammatory Disease. In: George, A.J.T., Urch, C.E. (eds) Diagnostic and Therapeutic Antibodies. Methods in Molecular Medicine, vol 40. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-076-4:99

Download citation

  • DOI: https://doi.org/10.1385/1-59259-076-4:99

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-798-4

  • Online ISBN: 978-1-59259-076-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics