Skip to main content

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 40))

Abstract

Advances in PCR techniques and the increase of the antibody V region sequences in the database have boosted developments in the field of antibody engineering. The V region genes can be amplified from hybridomas (1), preimmunized donors (2), naive donors (3), or from the cells expressing antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glaser, S., Kristensson, K., Chilton, T., Huse, W. (1995) Engineering the antibody combining site by codon-based mutagenesis in a filamentous phage display system, in Antibody Engineering, 2nd ed. (Borrebaeck, C. A. K., ed.), Oxford Unversity Press, Oxford, UK, pp. 117–121.

    Google Scholar 

  2. Barbas, C. F., III and Burton, D. R. (1996) Selection and evolution of high affinity human anti-viral antibodies. Trends Biotechnol.14, 230–234.

    Article  CAS  PubMed  Google Scholar 

  3. Duenas, M. and Borrebaeck, C. A. K. (1994) Clonal selection and amplification of phage displayed antibodies by linking antigen recognition and phage replication. Biotechnology12, 999–1002.

    Article  CAS  PubMed  Google Scholar 

  4. Boulianne, G. L., Hozumi, N., and Shulman, M. J. (1984) Production of functional chimaeric mouse/human antibody. Nature312, 643–646.

    Article  CAS  PubMed  Google Scholar 

  5. Morrison, S. L., Johnson, M. J., Herzenberg, L. A., and Oi, V.T. (1984) Chimeric human antibody molecules: mouse antigen binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA81, 6851–6855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Neuberger, M. S., Williams, G. T., Mitchell, E. B., Jouhal, S. S., Flanagan, J. G., and Rabbits, T. H. (1985) A hapten-specific chimaeric IgE antibody with human physiological effector function. Nature314, 268–270.

    Article  CAS  PubMed  Google Scholar 

  7. Better, M., Chang, C. P., Robinson, R. R., and Horwitz, A. H. (1988) Escherichia coli secretion of an active chimeric antibody fragment. Science240, 1041–1043.

    Article  CAS  PubMed  Google Scholar 

  8. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S., and Winter, G. (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature321, 522–525.

    Article  CAS  PubMed  Google Scholar 

  9. Riechmann, L., Foote, J., and Winter, G. (1988) Expression of an antibody Fv fragment in myeloma cells. J. Mol. Biol.203, 825–828.

    Article  CAS  PubMed  Google Scholar 

  10. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., Lee, T., Pope, S. H., Riordan, G. S., and Whitlow, M. (1988) Single-chain antigen-binding proteins. Science242, 423–426.

    Article  CAS  PubMed  Google Scholar 

  11. Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai, M.-S., Novotny, J., Margolies, M. J., Ridge, R. J., Bruccoleri, R. E., and Haber, E., Crea, R. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA85, 5879–5883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glockshuber, R., Malia, M., Pfitzinger, I., and Plückthun, A. (1990) A com-parision of strategies to stabilize immunoglobulin Fv fragments. Biochemistry29, 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  13. Verhoeyen, M., Milstein, C., and Winter, G. (1988) Reshaping human antibodies: grafting an antilysozyme activity. Science239, 1534–1536.

    Article  CAS  PubMed  Google Scholar 

  14. Kettleborough, C. A., Saldanha, J., Heath, V. J., Morrison, C. J., and Bendig, M. M. (1991) Humanisation of a mouse monoclonal antibody by CDR grafting: the importance of framework residues on loop confirmation. Protein Eng.4, 773–783.

    Article  CAS  PubMed  Google Scholar 

  15. Reichmann, L., Clark, M., Waldmann, H., and Winter, G. (1988) Reshaping human antibodies for therapy. Nature322, 323–327.

    Article  Google Scholar 

  16. Gussow, D. and Seaman, G. (1991) Humanisation of monoclonal antibodies. Methods Enzymol.203, 99–121.

    Article  CAS  PubMed  Google Scholar 

  17. Rader, C., Cheresh, D. A., Barbas, C. F., 3rd. (1998) A phage display approach for rapid antibody humanisation: designed combinatorial V gene libraries. Proc. Natl. Acad. Sci. USA95, 8910–8915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gorman, S. D. and Clark, M. R. (1990) Humanisation of monoclonal antibodies for therapy. Semin. Immunol.2, 457–466.

    CAS  PubMed  Google Scholar 

  19. Padlan, E. A. (1991) A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol. Immunol.28, 489–498.

    Article  CAS  PubMed  Google Scholar 

  20. Pedersen, J. T., Henry, A. H., Searle, S. J., Guild, B. C., Roguska, M., and Rees, A. R. (1994) Comparison of surface accesible residues in human and murine immunoglobulin Fv domains. Implication for the humanization of murine antibodes. J. Mol. Biol.235, 959–973.

    Article  CAS  PubMed  Google Scholar 

  21. Roguska, M. A., Pedersen, J. T., Keddy, C. A., Henry, A. H., Searle, S. J., Lambert, J. M., Goldmacher, V. S., Blattler, W. A., Rees, A. R., and Guild, B. C. (1994) Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc. Natl. Acad. Sci. USA91, 969–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Porter, R. R. (1959) The hydrolysis of rabbit g-globulin and antibodies with crystalline papain. Biochem. J.73, 119–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Inbar, D., Hochman, J., and Givol, D. (1972) Localization of the antibody combining site within the variable portion of heavy and light chains. Proc. Natl. Acad. Sci. USA69, 2659–2662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hochman, J., Inbar, D., and Givol, D. (1973) An active antibody fragment Fv composed of the variable portions of heavy and light chains. Biochemistry12, 1130–1135.

    Article  CAS  PubMed  Google Scholar 

  25. Sharon, J. and Givol, D. (1976) Preparation of Fv fragment from mouse myeloma XRPC-25 immunoglobulin possessing anti-dinitriphenyle activity. Biochemstry15, 1591–1594.

    Article  CAS  Google Scholar 

  26. Kabat, E. A., Wu, T. T., and Bilofsky, H (1978) Variable region genes for immunoglobulin framework are assembled from small segments of DNA-a hypothesis. Proc. Natl. Acad. Sci. USA75, 2429–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Skerra, A. and Plückthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science240, 1038–1041.

    Article  CAS  PubMed  Google Scholar 

  28. Brinkmann, U., Reiter, Y., Jung, S. H., Lee, B., and Pastan, I. (1993) A recombi-nant immunotoxin containing a disulphide-stabilized Fv fragment. Proc. Natl. Acad. Sci. USA90, 7538–7548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anand, N. N., Mandal, S., MacKenzie, C. R., Sadowska, J., Sigurskjold, B., Young, N. M., Bundle, D. R., and Narang, S. A. (1991) Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for a Salmonella serotype B O-antigen. J. Biol. Chem.266, 21,874–21,879.

    Article  CAS  PubMed  Google Scholar 

  30. Huston, J. S., Mudgett-Hunter, M., Tai, M. S., McCartney, J., Warren, F., Haber, E., and Oppermann, H. (1991) Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol.203, 46–88.

    Article  CAS  PubMed  Google Scholar 

  31. Davies, D. R. and Metzger, H. (1983) Structural basis of antibody function. Ann. Rev. Immunol.1, 87–117.

    Article  CAS  Google Scholar 

  32. Harwood, P. J., Boden, J., Pedley, R. B., Rawlins, G., Rogers, G. T., and Bagshawe, K. D. (1985) Comparitive tumour localization of antibody fragments and intact IgG in nude mice bearing a CEA-producing human colon tumour xenograft. Eur. J. Cancer Clin. Oncol.21, 1515–1522.

    Article  CAS  PubMed  Google Scholar 

  33. Begent, R. H. and Chester, K. A. (1997) Single-chain Fv antibodies for targeting cancer therapy. Biochem. Soc. Trans.25, 715–717.

    Article  CAS  PubMed  Google Scholar 

  34. Colcher, D., Bird, R., Roselli, M., Hardman, K. D., Johnson, S., Pope, S., Dodd, S. W., Pantoliano, M. W., Milenic, D. E., and Scholm, J. (1990) In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J. Natl. Cancer Inst.82, 1191–1197.

    Article  CAS  PubMed  Google Scholar 

  35. Larson, S. M., Raubitschek, A., Reynolds, J. C., Neumann, R. D., Hellstrom, K. E., Hellstrom, I., Colcher, D., Schlom, J., Glatstein, E., and Carrasquillo, J. A. (1989) Comparison of bone marrow dosimetry and toxic effect of high dose 131I-labeled monoclonal antibodies administered to man. Int. J. Rad. Appl. Instrum. B16, 153–158.

    Article  CAS  PubMed  Google Scholar 

  36. Milenic, D. E., Yokota, T., Filpula, D. R., Finkelman, M. A. J., Dodd, S. W., Wood, J. F., Whitlow, M., Snoy, P., and Schlom, J. (1991) Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res.51, 6363–6371.

    CAS  PubMed  Google Scholar 

  37. Begent, R. H. J., Verhaar, M. J., Chester, K. A., Casey, J. L., Green, A. J., Napier, M. P., Hope-Stone, L. D., Cushen, N., Keep, P. A., Johnson, C. J., Hawkins, R. E., Hilson, A. J. W., and Robson, L. (1996) Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat. Med.2, 979–984.

    Article  CAS  PubMed  Google Scholar 

  38. Yokota, T., Milenic, D. E., Whitlow, M., and Schlom, J. (1992) Rapid tumor penetration of a single-chainFv and comparision with other immunoglobulin forms. Cancer Res.52, 3402–3408.

    CAS  PubMed  Google Scholar 

  39. Yokota, T., Milenic, D. E., Whitlow, M., Wood, J. F., Hubert, S. L., and Schlom, J. (1993) Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms. Cancer Res.53, 3776–3783.

    CAS  PubMed  Google Scholar 

  40. Seccamani, E., Tattanelli, M., Mariani, M., Spranzi, E., Scassellati, G. A., and Siccardi, A. G. (1989) A simple qualitative determination of human antibodies to murine immunoglobulins (HAMA) in serum samples. Nucl. Med. Biol.16, 167–170.

    CAS  Google Scholar 

  41. Stewart, J., Hird, V., Snook, D., Sullivan, M., Hooker, G., and Courtenay-Luck, N. (1990) Intraperitoneal yttrium-90 labeled monoclonal antibody in ovarian cancer. J. Clin. Oncol.5, 1890–1899.

    Google Scholar 

  42. Hird, V., Maraveyas, A., Snook, D., Dhokia, B., Soutter, W. P., Meares, C., Stewart, J. S. W., Mason, P., Lambert, H. E., and Epenetos, A. A. (1993) Adjuvant therapy of ovarian cancer with radioactive monoclonal antibody. Br. J. Cancer68, 403–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Courtenay-Luck, N., Epenetos, A., Moore, R., Larche, M., Pectasides, D., Dhokia, B., and Ritter, M. (1986) Development of primary and secondary immune responses to mouse monoclonal antibodies used in the diagnosis and therapy of malignant neoplasms. Cancer Res.46, 6489–6493.

    CAS  PubMed  Google Scholar 

  44. Nedelman, M. A., Shealy, D. J., Boulin, R., Brunt, E., Seasholtz, J. I., Allen, E., McCartney, J. E., Warren, F. D., Oppermann, H., Pang, R. H. L., Berger, H. J., and Weisman, H. F. (1993). Rapid infarct imaging with a technetium-99m-labeled antimyosin recombinant single-chain Fv: evaluation in a canine model of acute myocardial infarction. J. Nucl. Med.34, 234–241.

    CAS  PubMed  Google Scholar 

  45. Chester, K. A., Begent, R. H., Robson, L., Keep, P., Pedley, R. B., Boden, J. A., Boxer, G., Green, A., Winter, G., Cochet, O., and Hawkins, R. E. (1994) Phage libraries for generation of clinically useful antibodies. Lancet343, 455–456.

    Article  CAS  PubMed  Google Scholar 

  46. George, A. J. T., Jamar, F., Tai, M.-S., Heelan, B. T., Adams, G. P., McCartney, J. E., Houston, L. L., Weiner, L. M., Oppermann, H., and Peters, A. M. (1995) Radiometal labeling of recombinant proteins by a genetically engineered minimal chelation site: technetium-99m coordination by single-chain Fv antibody fusion proteins through a C-terminal cysteinyl peptide. Proc. Natl. Acad. Sci. USA92, 8358–8363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tai, M.-S., McCartney, J. E., Adams, G. P., Jin, D., Hudziak, R. M., Oppermann, H., Laminet, A. A., Bookman, M. A., Wolf, E. J., Liu, S., Stafford III, W. F., Frand, I., Houston, L. L., Weiner, L. M., and Huston, J. S. (1995) Targeting c-erbB-2 expressing tumors using single-chain Fv monomers and dimers. Cancer Res.55, 5983s–5989s.

    CAS  PubMed  Google Scholar 

  48. Adams, G. P., McCartney, J. E., Wolf, E. J., Eisenberg, J., Tai, M. S., Huston, J. S., Stafford, W., Bookman, M. A., Houston, L. L., and Weiner, L. M. (1995) Optimization of in vivo tumor targeting in SCID mice with divalent forms of 741F8 anti-c-erbB-2 single-chain Fv: effects of dose escalation and repeated i.v. administration. Cancer Immunol. Immunother.40, 299–306.

    Article  CAS  PubMed  Google Scholar 

  49. Hu, S., Shively, L., Raubitschek, A., Sherman, M., Williams, L. E., Wong, J. Y., Shively, J. E., and Wu, A. M. (1996) Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res.56, 3055–3061.

    CAS  PubMed  Google Scholar 

  50. Verhaar, M. J., Chester, K. A., Keep, P. A., Robson, L., Pedley, R. B., Boden, J. A., Hawkins, R. E., and Begent, R. H. (1995) A single chain Fv derived from a filamentous phage library has distinct tumor targeting advantages over one derived from a hybridoma. Int. J. Cancer61, 497–501.

    Article  CAS  PubMed  Google Scholar 

  51. Chaudhary, V. K., Gallo, M. G., FitzGerald, D. J., and Pastan, I. (1990) Arecom-binant single-chain immunotoxin composed of anti-tac variable regions and truncated Diptheria toxin. Proc. Natl. Acad. Sci. USA87, 9491–9494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chaudhary, V. K., Queen, C., Junghans, R. P., Waldmann, T. A., FitzGerald, D. J., and Pastan, I. (1989) A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature339, 394–397.

    Article  CAS  PubMed  Google Scholar 

  53. Nicholls, P. J., Johnson, V. G., Andrew, S. M., Hoogenboom, H. R., Raus, J. C., and Youle, R. J. (1993) Characterization of single-chain antibody (scFv)-toxin fusion proteins produced in vitro in rabbit reticulocyte lysate. J. Biol. Chem.268, 5302–5308.

    Article  CAS  PubMed  Google Scholar 

  54. Pauza, M. E., Doumbia, S. O., and Pennell, C. A. (1997) Construction and characterization of human CD7-specific single-chain Fv immunotoxins. J. Immunol.158, 3259–3269.

    CAS  PubMed  Google Scholar 

  55. Francisco, J. A., Gawlak, S. L., Miller, M., Bathe, J., Russell, D., Chace, D., Mixan, B., Zhao, L., Fell, H. P., and Siegall, C. B. (1997) Expression and characterization of bryodin 1 and a bryodin 1-based single-chain immunotoxin from tobacco cell culture. Bioconjug. Chem.8, 708–713.

    Article  CAS  PubMed  Google Scholar 

  56. Tai, M-S., Mudgett-Hunter, M., Levinson, D., Wu, G-M., Haber, E., Oppermann, H., and Huston, J. S. (1990) A bifunctional fusion protein containing Fc-binding fragment B of Staphylococcal protein A amino terminal to antidigoxin single-chain Fv. Biochemistry29, 8024–8030.

    Article  CAS  PubMed  Google Scholar 

  57. Traunecker, A., Lanzavecchia, A., and Karjalainen, K. (1991) Bispecific single-chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells. EMBO J.10, 3635–3659.

    Article  Google Scholar 

  58. Hakim, I., Levy, S., and Levy, R. (1996) Anine-amino acid peptide from IL-1 beta augments antitumor immune responses induced by protein and DNA vaccines. J. Immunol.157, 5503–5511.

    CAS  PubMed  Google Scholar 

  59. Holliger, P., Prospero, T., and Winter, G. (1993) “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA90, 6444–6448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perisic, O., Webb, P. A., Holliger, P., Winter, G., and Williams, R. L. (1994) Crystal structure of a diabody, a bivalent antibody fragment. Structure2, 1217–1226.

    Article  CAS  PubMed  Google Scholar 

  61. Holliger, P., Brissinck, J., Williams, R. L., Thielemans, K., and Winter, G. (1996) Specific killing of lymphoma cells by cytotoxic T-cells mediated by a bispecific diabody. Protein Eng.9, 299–305.

    Article  CAS  PubMed  Google Scholar 

  62. Holliger, P., Wing, M., Pound, J. D., Bohlen, H., and Winter, G. (1997) Retargeting serum immunoglobulin with bispecific diabodies. Nat. Biotechnol.15, 632–636.

    Article  CAS  PubMed  Google Scholar 

  63. Kontermann, R. E., Wing, M. G., and Winter, G. (1997) Complement recruitment using bispecific diabodies. Nat. Biotechnol.15, 629–631.

    Article  CAS  PubMed  Google Scholar 

  64. Kontermann, R. E., Martineau, P., Cummings, C. E., Karpas, A., Allen, D., Derbyshire, E., and Winter, G. (1997) Enzyme immunoassays using bispecific diabodies. Immunotechnology3, 137–144.

    Article  CAS  PubMed  Google Scholar 

  65. Iliades, P., Kortt, A. A., and Hudson, P. J. (1997) Triabodies: single chain Fv fragments without a linker form trivalent trimers. FEBS Lett.409, 437–441.

    Article  CAS  PubMed  Google Scholar 

  66. Pei, X. Y., Holliger, P., Murzin, A. G., and Williams, R. L. (1997) The 2.0-A resolution crystal structure of a trimeric antibody fragment with noncognate VH-VL domain pairs shows a rearrangement of VH CDR3. Proc. Natl. Acad. Sci. USA94, 9637–9642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. George, A. J. T., Titus, J., Jost, C., Kurucz, I., Perez, P., Andrew, S., Nicholls, P., Huston, J., and Segal, D. (1994) Redirection of T cell-mediated cytotoxicity by a recombinant single-chain Fv molecule. J. Immunol.152, 1802–1811.

    CAS  PubMed  Google Scholar 

  68. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature348, 552–554.

    Article  CAS  PubMed  Google Scholar 

  69. Fuchs, P., Breitling, F., Dubel, S., Seehaus, T., and Little, M. (1991) Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptidogly-can associated lipoprotein. Biotechnol. NY9, 1369–1372.

    Article  CAS  Google Scholar 

  70. Huston, J. S., McCartney, J., Tai, M.-S., Mottola-Hartshorn, C., Jin, D., Warren, F., Keck, P., and Oppermann, H. (1993) Medical applications of single-chain antibodies. Int. Rev. Immunol.10, 195.

    Article  CAS  PubMed  Google Scholar 

  71. McCartney, J. E., Lederman, L., Drier, E. A., Cabral-Denison, N. A., Wu, G. M., Batorsky, R. S., Huston, J. S., and Oppermann, H. (1991) Biosynthetic antibody binding sites: development of a single-chain Fv model based on antidinitrophenol IgA myeloma MOPC 315. J. Protein Chem.10, 669–683.

    Article  CAS  PubMed  Google Scholar 

  72. Bedzyk, W. D., Weidner, K. M., Denzin, L. K., Johnson, L. S., Hardman, K. D., Pantoliano, M. W., Asel, E. D., and Voss, E., Jr. (1990) Immunological and structural characterization of a high affinity anti-fluorescein single-chain antibody. J. Biol. Chem.265, 18,615–18,620.

    Article  CAS  PubMed  Google Scholar 

  73. Takkinen, K., Laukkanen, M. L., Sizmann, D., Alfthan, K., Immonen, T., Vanne, L., Kaartinen, M., Knowles, J. K., and Teeri, T. T. (1991) An active single-chain antibody containing a cellulase linker domain is secreted by Escherichia coli. Protein Eng.4, 837–841.

    Article  CAS  PubMed  Google Scholar 

  74. Novotny, J., Ganju, R. K., Smiley, S. T., Hussey, R. E., Luther, M. A., Recny, M. A., Siliciano, R. F., and Reinherz, E. L. (1991) A soluble, single-chain T-cell receptor fragment endowed with antigen-combining properties. Proc. Natl. Acad. Sci. USA88, 8646–8650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Turner, D. J., Ritter, M. A., and George, A. J. T. (1997) Importance of the linker in expression of single-chain Fv antibody fragments: optimisation of peptide sequence using phage display technology. J. Immunol. Methods205, 43–54.

    Article  CAS  PubMed  Google Scholar 

  76. Atwell, S., Ridgway, J. B., Wells, J. A., and Carter, P. (1997) Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J. Mol. Biol.270, 26–35.

    Article  CAS  PubMed  Google Scholar 

  77. Zhu, Z., Presta, L. G., Zapata, G., and Carter, P. (1997) Remodeling domain interfaces to enhance hetrodimer formation. Protein Sci.6, 781–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Verma, R., Boleti, E., and George, A. J. T. (1998) Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J. Immunol. Methods216, 165–181.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Verma, R., Boleti, E. (2000). Engineering Antibody Molecules. In: George, A.J.T., Urch, C.E. (eds) Diagnostic and Therapeutic Antibodies. Methods in Molecular Medicine, vol 40. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-076-4:35

Download citation

  • DOI: https://doi.org/10.1385/1-59259-076-4:35

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-798-4

  • Online ISBN: 978-1-59259-076-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics