Practical Considerations in the Exploitation of Passive Tumor Targeting

Part of the Methods in Molecular Medicine™ book series (MIMM, volume 25)


Specific targeting of radioisotopes or toxic drugs to tumors for cancer detection and treatment is an enticing but elusive goal. It has proved difficult to achieve adequate concentration ratios between tumor and normal tissues to improve on standard diagnostic and therapeutic methods.


Uptake Ratio Interstitial Pressure Multicellular Spheroid Tumor Cold Antibody Normal Tissue Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bierwaltes, W. H. (1982) The treatment of thyroid carcinoma with radioactive iodine. Semin. Nucl. Med. 23, 43.Google Scholar
  2. 2.
    Hofnagel, C. A. and Lewington, V. J. (1994) MIBG therapy, in Nuclear Medicine in Clinical Diagnosis and Treatment (Murray and Ell, eds.), Churchill Livingstone, Edinburgh, Scotland.Google Scholar
  3. 3.
    Bauer, F. K., Tubis, M., and Thomas, H. B. (1955) Accumulation of homologous radioiodinated albumin in experimental tumours. Proc. Soc. Exper. Biol. Med. 90, 140–142.Google Scholar
  4. 4.
    Hoffer, P. P. and Gottschalk A. (1974) Tumour scanning agents. Semin. Nucl. Med. 4, 305–316.CrossRefPubMedGoogle Scholar
  5. 5.
    Quastel, M. R., Richter, A. M., and Levy, J. G. (1990) Tumour scanning with Indium-111 dihaematoporphyrin ether. Br. J. Cancer 62, 885–890.CrossRefPubMedGoogle Scholar
  6. 6.
    Zwi, L. J., Baguley, B. C., Gain, J. B., and Wilson, W. R. (1990) Necrosis in non-tumour tissues caused by flavone acetic acid and 5,6-dimethyl xanthenone acetic acid. Br. J. Cancer 62, 932–934.CrossRefPubMedGoogle Scholar
  7. 7.
    Nakajo, M., Kobayashi, H., Shimabukuro, K., Shirono, K., Sakata, H., Taguchi, M., Uchiyama, N., Sonoda, T., and Shinohara, S. (1988) Biodistribution of in vivo kinetics of Iodine-131 lipiodol infused via the hepatic artery of patients with hepatic cancer. J. Nucl. Med. 29, 1066–1077.PubMedGoogle Scholar
  8. 8.
    Briele, B., Hotze, A., Oehr, P., Biersack, H. J., Rosanowski, F., Gorgulla, W., and Herberhold, C. (1990) Tumour imaging with labelled liposomes. Lancet 336, 875–876.CrossRefPubMedGoogle Scholar
  9. 9.
    Widder, K. J., Morris, R. M., Poore, G. A., Howard, D. P., and Senyei, A. E. (1983) Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur. J. Cancer Clin. Oncol. 19, 135–139.CrossRefPubMedGoogle Scholar
  10. 10.
    Evers, B. M., Parekh, D., Townsend, C. M., Jr., and Thompson, J. C. (1991) Somatostatin and analogues in the treatment of cancer. Ann. Surg. 213, 190–198.CrossRefPubMedGoogle Scholar
  11. 11.
    Mather, S. J. and Ward, B. G. (1987) High efficiency iodination of monoclonal antibodies for radiotherapy. J. Nucl. Med. 28, 1034–1036.PubMedGoogle Scholar
  12. 12.
    Anderson, W. T., and Strand, M. (1978) Radiolabelled antibody: iodine versus radiometal chelates. NCI Monogr. 3, 149–151.Google Scholar
  13. 13.
    Hillier, A. P. (1972) Deiodination of thyroid hormones by the perfused rat liver. J. Physiol. 222, 475–485.PubMedGoogle Scholar
  14. 14.
    Pernis, B. (1985) Internalisation of lymphocyte membrane components. Immunol. Today 6, 45–49.CrossRefGoogle Scholar
  15. 15.
    Hnatowich, D. J., Virxi, F., and Doherty, P. W. (1985) DTPA-coupled antibodies labeled with yttrium-90. J. Nucl. Med. 26, 503–509.PubMedGoogle Scholar
  16. 16.
    Stewart, J. S., Hird, V., Snook D., Sullivan, M., Myers, M. J., and Epenetos, A. A. (1988) Intraperitoneal 131I-and 90Y-labelled monoclonal antibodies for ovarian cancer: pharmacokinetics and normal tissue dosimetry. Int. J. Cancer (Suppl. 3), 71–76.Google Scholar
  17. 17.
    Vriesendorp, H. M., Herpst, J. M., Leichner, P. K., Klein, J. L., and Order, S. E. (1989) Polyclonal 90Yttrium labeled antiferritin for refractory Hodgkin’s disease. Int. J. Rad. Oncol. Biol. Phys. 17, 815–821.CrossRefGoogle Scholar
  18. 18.
    Rainsbury, R. and Westwood, J. (1982) Tumour localisation with monoclonal antibody radioactivity labelled with metal chelate rather than iodine. Lancet II: 1347–1348.CrossRefGoogle Scholar
  19. 19.
    Meares, C. F., Moi, M. K., Diril, H., Kukis, D. L., McCall, M. J., Deshpande, S. V., DeNardo, S. J., Snook, D., and Epenetos, A. A. (1990) Macrocyclic chelates of radiometals for diagnosis and therapy. Br. J. Cancer 62(Suppl. X), 21–26.Google Scholar
  20. 20.
    Alvarez, V. L., Wen, M. L., Lee, C., Lopes, A. D., Rodwell, J. D., and McKearn, T. J. (1986) Site-specifically modified IIIIndium labeled antibodies give low liver backgrounds and improved radioimmunoscintigraphy. Int. J. Rad. Appl. Instrum. [B] 13, 347–352.Google Scholar
  21. 21.
    Otsuka, F. L. and Fleishman, J. B. (1986) Comparative studies using 125I-and IIIInlabeled monoclonal antibodies. Eur. J. Nucl. Med. II, 295–299.Google Scholar
  22. 22.
    Epenetos, A. A., Britton, K. E., Mather, S., Shepherd, J., Granowska, M., Taylor-Papadimitriou, J., Nimmon, C. C., Durbin, H., Hawkins, L. R., Malpas, J. S., and Bodmer, W. F. (1982) Targeting of Iodine-123-labelled tumour-associated monoclonal antibodies to ovarian, breast, and gastrointestinal tumours. Lancet II, 999–1004.CrossRefGoogle Scholar
  23. 23.
    Zamora, P. O., Bender, H., Knapp, F. F. (R.) Jr., and Biersack, H. J. (1996) Radiotherapy of intrathoracic carcinoma xenografts with 188Re-RC-160, a somatostatin analogue. Tumor Targeting 2, 49–59.Google Scholar
  24. 24.
    Cole, W. C., DeNardo, S. J., Meares, C. F., McCall, M. J., DeNardo, G. L., Epstein, A. L., O’Brien, H. A., and Moi, M. K. (1987) Comparative serum stability of radiochelates for antibody radiopharmaceuticals. J. Nucl. Med. 28b 83–90.Google Scholar
  25. 25.
    Schwarz, A., Streinstrasser, A., and Hoechst, A. G. (1987) A novel approach to Tc99m-labelled monodonal antibodies. J. Nucl. Med. 28, 721.Google Scholar
  26. 26.
    Baum, R. P., Hertel, A., Lorenz, M., Schwarz, A., Encke, A., and Hor, G. (1989) 99mTc-labelled anti-CEA monoclonal antibody for tumour immunoscintigraphy: first clinical results. Nucl. Med. Commun. 10, 345–352.CrossRefPubMedGoogle Scholar
  27. 27.
    Ott, R. J., Grey, L. J., Zivanovic, M. A., Flower, M. A., Trott, N. G., Moshakis, V., Coombes, R. C., Omerod, M. C., Westwood, J. H., and McCready, V. R. (1983) The limitations of the dual radionuclide subtraction technique for the external detection of tumour by radioiodine-labelled antibodies. Br. J. Radiol. 56, 101–108.CrossRefPubMedGoogle Scholar
  28. 28.
    Chandler, S. T. and Anderson, P. (1987) A method for thresholding subtracted images in radiolabelled-antibody imaging. Br. J. Radiol. 60, 881–886.CrossRefPubMedGoogle Scholar
  29. 29.
    Granowska, M., Nimmon, C. C., Britton, K. E., Crowther, M., Mather, S. J., Slevin, M. L., and Shepherd, J. H. (1988) Kinetic analysis and probability mapping applied to the detection of ovarian cancer by radioimmunoscintigraphy. J. Nucl. Med. 29, 599–607.PubMedGoogle Scholar
  30. 30.
    Serafini, A. N., Goldenberg, D. M., Higinbotham-Ford, E. A., Silberstein, E. B., Van Heertum, R. L., Kotler, J. A., Balasubramanian, N., Garty, I., and Wlodkowski, T. (1989) A multicenter trial of cancer imaging with fragments of CEA monoclonal antibodies. J. Nucl. Med. 82, 748.Google Scholar
  31. 31.
    Goodwin, D., Meares, C., Diamanti, C., McCall, M., Lai, X., Torti, F., McTigue, M., and Martin, B. (1984) Use of specific antibody for rapid clearance of circulating blood background from radiolabelled tumour imaging proteins. Eur. J. Nucl. Med. 9, 209–215.CrossRefPubMedGoogle Scholar
  32. 32.
    Pedley, P. B., Dale, R., Boden, J. A., Begent, R. H., Keep, P. A., and Green, A. J. (1989) The effect of second antibody clearance on the distribution and dosimetry of radiolabelled anti-CEA antibody in a human colonic tumor xenograft model. Int. J. Cancer 43, 713–718.CrossRefPubMedGoogle Scholar
  33. 33.
    Wahl, R. L., Geatti, O., Liebert, M., Wilson, B., Shreve, P., and Beers, B. A. (1987) Kinetics of interstitially administered monoclonal antibodies for purposes of lymphoscintigraphy. J. Nucl. Med. 28, 1736–1744.PubMedGoogle Scholar
  34. 34.
    Sutherland, R. M., Buchegger, F., Schreyer, M., Vacca, A., and Mach, J. P. (1987) Penetration and binding of radiolabeled anti-carcinoembryonic antigen monoclonal antibodies and their antigen binding fragments in human colon multicellu-lar spheroids. Cancer Res. 47, 1627–1633.PubMedGoogle Scholar
  35. 35.
    Searle, F., Adam, T., and Boden, J. A. (1986) Distribution of intact and Fab2 fragments of anti-human chorionic gonadotrophin antibodies in nude mice bearing human choriocarcinoma xenografts. Cancer Immunol. Immunother. 21, 205–208.CrossRefPubMedGoogle Scholar
  36. 36.
    Burraggi, G. L., Callegaro, L., Marianari, G., Turrin, A., Cascinelli, N., Attili, A., Bombardieri, E., Terno, G., Plassio, G., Dovis, M, Mazzuca, N., Natali, P. G., Scassallati, G. A., Rosa, U., and Ferrone, S. (1985) Imaging with 131I-labelled monoclonal antibodies to a high molecular weight melanoma-associated antigen in patients with melanoma: efficiency of whole immunoglobulin and its F(ab)2 fragments. Cancer Res. 45, 3378–3387.Google Scholar
  37. 37.
    Rowlinson-Busza, G., Deonarain, M. P., and Epenetos, A. A. (1996) Comparison of intact monoclonal antibody, its F(ab’)2 and Fab fragments and recombinant single chain Fv in a human tumour xenograft model. Tumour Targeting 2, 37–48.Google Scholar
  38. 38.
    Sharkey, R. M., Primus, F. J., Shochat, D., and Goldenberg, D. M. (1988) Comparison of tumour targeting of mouse monoclonal and goat polyclonal antibodies to carcinoembryonic antigen in the GW-39 human tumour-hamster host model. Cancer Res. 48, 1823–1828PubMedGoogle Scholar
  39. 39.
    Goldenberg, D. M., Goldenberg, H., Sharkey, R. M., Lee, R. E., Higginbotham-Ford, E., Horowitz, J. A., Hall, T. C., Pinsky, C. M., and Hansen, H. J. (1989) Imaging of colorectal carcinoma with radiolabeled antibodies. Semin. Nucl. Med. 19, 262–281.CrossRefPubMedGoogle Scholar
  40. 40.
    Delgado, C., Pedley, B., Herraez, A., Boden, R., Boden, J. A., Keep, P. A., Chester, K. A., Fisher, D., Begent, R. H., and Francis, G. E. (1996) Enhanced tumour specificity of an anti-carcinoembryonic antigen Fab’ fragment by poly(ethylene glycol) (PEG) modification. Br. J. Cancer 73, 175–182.CrossRefPubMedGoogle Scholar
  41. 41.
    Neri, D., de Lalla, C., Petrul, H., Soldani, P., di Stefano, A., Lozzi, L., Neri, G., and Neri, P. (1995) Engineering recombinant bifunctional antibodies. Tumour Targeting 1, 189–194.Google Scholar
  42. 42.
    Green, N. M. (1963) Avidin. The nature of the biotin-binding site. Biochem. J. 89, 599–609.PubMedGoogle Scholar
  43. 43.
    Hnatowich, D. J., Virzi, F., and Rusckowski, M. (1987) Investigations of avidin and biotin for imaging applications. J. Nucl. Med. 28, 1294–1302.PubMedGoogle Scholar
  44. 44.
    Pimm, M. V., Fells, H. F., Perkins, A. C., and Baldwin, R. W. (1988) Iodine-131 and indium-111 labelled avidin and streptavidin for pre-targeted immuno-scintigraphy with biotinylated antitumour monoclonal antibody. Nucl. Med. Commun. 9, 931–941.CrossRefPubMedGoogle Scholar
  45. 45.
    Bagshawe, K. D., Sharma, S. K., Springer, C. J., and Antoniw, P. (1995) Antibody directed enzyme prodrug therapy: a pilot-scale clinical trial. Tumour Targeting 1, 17–30.Google Scholar
  46. 46.
    Pimm, M. V. (1988) Drug-antibody conjugates for cancer therapy: potentials and limitations. Crit. Rev. Ther. Drug Carrier Syst. 5, 189–227.PubMedGoogle Scholar
  47. 47.
    Weinstein, J. N., Steller, M. A., Keenan, A. M., Covell, D. G., Kay, M. E., Sieber, S. M., Oldham, R. K., Hwang, K. M., and Parker, R. J. (1983) Monoclonal antibodies in the lymphatics: selective delivery to lymph node metastases of a solid tumor. Science 222, 423–426.Google Scholar
  48. 48.
    Epenetos, A. A., Courtenay-Luck N., Pickering, D., Hooker, G., Durbin, H., Lavender, J. P., and McKenzie, C. G. (1985) Antibody guided irradiation of brain glioma by arterial infusion of radioactive monoclonal antibody against epidermal growth factor receptor and blood group A antigen. Br. Med. J. 290, 1463–1466.CrossRefGoogle Scholar
  49. 49.
    Coakham, H. B., Richardson, R. B., Davies, A. G., Boume, A. P., Moseley, R. P., Kemshead, J. T., and Lashford, L. (1986) Antibody-guided radiation therapy via the CSF for malignant meningitis. Lancet II, 860,861.Google Scholar
  50. 50.
    Pectasides, D., Stewart, S., Courtenay-Luck N., Rampling, R., Munro, A. J., Krausz, T., Dhokia, B., Snook D., Hooker, G., Durbin, H., Taylor-Papadimitriou, J., Bodmer, W. F., and Epenetos, A. A. (1986) Antibody-guided irradiation of malignant pleural and pericardial effusions. Br. J. Cancer 53, 727–732.CrossRefPubMedGoogle Scholar
  51. 51.
    Hnatowich, D. J., Chinol, M., Siebecker, D. A., Gionet, M., Griffin, T., Doherty, P. W., Hunter, R., and Kase, K. R. (1988) Patient distribution of intraperitoneally administered yttrium-90-labeled antibody. J. Nucl. Med. 29, 1428–1434.PubMedGoogle Scholar
  52. 52.
    Wahl, R. L., Barrett, J., Geatti, O., Liebert, M., Wilson, B. S., Fisher, S., and Wagner, J. G. (1988) The intraperitoneal delivery of radiolabeled monoclonal antibodies: studies on the regional delivery advantage. Cancer Immunol. Immunother. 26, 187–201.CrossRefPubMedGoogle Scholar
  53. 53.
    Smith, D. B., Mosely, R. P., Begent, R. H. J., Coakham, H. B., Glaser, M. G., Dewhurst, S., Kelly, A., and Bagshawe, K. D. (1990) Quantitative distribution of 131I-labelled monoclonal antibodies administered by the intraventricular route. Eur.J. Cancer 26, 129–136.CrossRefPubMedGoogle Scholar
  54. 54.
    Press, O. W., Eary, J. F., Badger, C. C., Martin, P. J., Appelbaum, F. R., Levy, R., Miller, R., Brown, S., Nelp, W. B., Krohn, K. A., Fisher, D., DeSantes, K., Porter, B., Kidd, P., Thomas, E. D., and Bernstein, I. D. (1989) Treatment of refractory non-Hodgkin’s lym-phoma with radiolabeled MB-1 (anti-CD37) antibody. J. Clin. Oncol. 7, 1027–1038.PubMedGoogle Scholar
  55. 55.
    Jain, R. K. and Baxter, L. T. (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumours: significance of raised interstitial pressure. Cancer Res. 48, 7022–7032.PubMedGoogle Scholar
  56. 56.
    Maeda, H. (1991) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Delivery Rev. 6, 181–202.CrossRefGoogle Scholar
  57. 57.
    Braunschweiger, P. G. and Schiffer, L. M. (1986) Effect of dexamethasone on vascular function in RIF-1 tumors. Cancer Res. 46, 3299–3303.PubMedGoogle Scholar
  58. 58.
    Leenders, K. L., Beaney, R. P., Brooks, D. J., Lammertsma, A. A., Heather, J. D., and McKenzie, C. G. (1985) Dexamethasone treatment of brain tumour patients: effects on regional cerebral blood flow, blood volume, and oxygen utilisation. Neurology 35, 1610–1616.PubMedGoogle Scholar
  59. 59.
    Attard, A. R., Thomas, G. D., Chappell, M. J., Taylor, D. N., Baum, R. P., Dykes, P. W., Godfrey, K. R., Fraser, I. A., and Bradwell, A. R. (1991) Effect of high dose, high affinity antibody and dexamethasone on antibody uptake by colorectal cancer: results of a pilot study. Antibody, Immunoconj. Radiopharmaceut. 4, 871–876.Google Scholar
  60. 60.
    Curti, B. D., Urba, W. J., Alvord, W. G., et al. (1993) Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: changes during treatment. Cancer Res. 53, 2204.PubMedGoogle Scholar
  61. 61.
    Schultz, K. R., Badger, C. C., Dombi, G. W., Greenberg, P. P., and Bernstein, I. D. (1992) Effect of interleukin-2 on biodistribution of monoclonal antibody in tumour and normal tissues in mice bearing SL-2 thymoma. J. Natl. Cancer Inst. 15, 109–112.Google Scholar
  62. 62.
    Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S., and Winter, G. (1986) Replacing the complementarily-determining regions in a human antibody with those from a mouse. Nature 321, 522–525.CrossRefPubMedGoogle Scholar
  63. 63.
    Hamblin, T. J., Cattan, A. R., Glennie, M. J., Mackenzie, M. R., Stevenson, F. K., Watts, H. F., and Stevenson, G. T. (1987) Initial experience in treating human lymphoma with a chimeric univalent derivative of monoclonal anti-idiotype antibody. Blood 69, 790–797.PubMedGoogle Scholar
  64. 64.
    McCabe, R. P., Peters, L. C., Haspel, M. V., Pomato, N., Carrasquillo, J. A., and Hanna, M. G., Jr. (1988) Preclinical studies on the pharmacokinetic properties of human monoclonal antibodies to colorectal cancer and their use for detection of tumors. Cancer Res. 48, 4348–4353.PubMedGoogle Scholar
  65. 65.
    Ledermann, J. A., Begent, R. H. J., Bagshawe, K. D., Riggs, S. J., Searle, F., Glaser, M. G., Green, A. J., and Dale, R. G. (1988) Repeated antitumour antibody therapy in man with suppression of the host response by Cyclosporin A. Br. J. Cancer 58, 654–657.CrossRefPubMedGoogle Scholar
  66. 66.
    Zimma, A. M., Rosen, S. T., Spies, S. M., Golman-Leilin, R., Kazikiewicz, J. M., Silverstein, E. A., and Kaplan, E. H. (1988) Radioimmunotherapy of patients with cutaneous T-cell lymphoma using an iodine-131-labeled monoclonal antibody: analysis of retreatment following plasmapheresis. J. Nucl. Med. 19, 174–180.Google Scholar
  67. 67.
    Rosenthal, K. C., Tompkins, W. A. F., and Rawls, W. E. (1980) Factors affecting the expression of carcinoembryonic antigen at the surface of cultured human colon carcinoma cells. Cancer Res. 40, 4774–4750.Google Scholar
  68. 68.
    Iacobelli, S., Scambia, G., Natoli, C., Benedetti Panici, P., Baiocchi, G., Perone, L., and Mancuso, S. (1988) Recombinant human leucocyte interferon-α 2b stimulates the synthesis and release of a 90K tumor-associated antigen in human breast cancer cells. Int. J. Cancer 42, 182–184.CrossRefPubMedGoogle Scholar
  69. 69.
    Rowlinson, G., Balkwill, F., Snook, D., Hooker, G., and Epenetos, A. A. (1986) Enhancement by gamma-interferon of in vivo tumour radiolocalization by a monoclonal antibody against HLA-DR antigen. Cancer Res. 46, 6413–6417.PubMedGoogle Scholar
  70. 70.
    Wong, J. Y. C., Mivechi, N. F., Paxton, R. J., Williams, L. E., Beatty, B. G., Beatty, J. D., and Shively, J. E. (1989) The effects of hyperthermia on tumor carcinoembryonic antigen expression. Int. J. Radiol. Biol. Phys. 17, 803–808.CrossRefGoogle Scholar
  71. 71.
    Shi, Z. R., Tsao, D., and Kim, Y. S. (1983) Subcellular distribution, synthesis, and release of carcinoembryonic antigen in cultured human colon adenoma cell lines. Cancer Res. 43, 4045–4049.PubMedGoogle Scholar
  72. 72.
    Goldenberg, D. M., Kim, E. E., DeLand, F. H., Spremulli, E., Nelson, M. O., Cockerman, J. P., Primus, F. J., Corgan, R. L., and Alpert, E. (1980) Clinical studies on the radioimmunodetection of tumours containing alpha-fetoprotein. Cancer 45, 2500–2505.CrossRefPubMedGoogle Scholar
  73. 73.
    Katoh, Y., Nakata, K., Kohno, K., Shima, M., Satoh, A., Kusumoto, Y., Ishii, N., Kohji, T., Shiku, H., and Nagataki, S. (1990) Immunoscintigraphy of human tumors transplanted in nude mice with radiolabeled anti-ras p21 monoclonal antibodies. J. Nucl. Med. 31, 1520–1526.PubMedGoogle Scholar
  74. 74.
    Krizan, Z., Murray, J. L., Hersh, E. M., Rosenblum, M. G., Glenn, H. J., Gschwind, C. R., and Carlo, D. J. (1985) Increased labeling of human melanoma cells in vitro using combinations of monoclonal antibodies recognising separate cell surface antigenic determinants. Cancer Res. 45, 4904–4909.PubMedGoogle Scholar
  75. 75.
    Baum, R. P, Lorenz, M., Hottenrott, C., Albrecht, M., Senekowitch, R., Happ, J., Hertel, A., Spitz, J., and Hor, G. (1988) Radioimmunoscintigraphy using monoclonal antibodies to CEA, CA 19-9 and CA 125. Int. J. Biol. Markers 3, 177–184.PubMedGoogle Scholar
  76. 76.
    Durrant, L. G., Robins, R. A., and Baldwin, R. W. (1989) Flow cytometric screening of monoclonal antibodies for drug or toxin targeting to human cancer. J. Natl. Cancer Inst. 9, 688–696.Google Scholar
  77. 77.
    Brown, M. S., Anderson, R. G. W., and Goldstein, J. L. (1983) Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell 32, 663–667.CrossRefPubMedGoogle Scholar
  78. 78.
    Glennie, M. J. and Stevenson, G. T. (1982) Univalent antibodies kill tumour cells in vitro and in vivo. Nature 295, 712–714.CrossRefPubMedGoogle Scholar
  79. 79.
    Nadler, L. M., Stashenko, P., Hardy, R., Kaplan, W. D., Burton, L. N., Kufe, D. W., Antman, K. H., and Schlossman, S. F. (1980) Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res. 40, 3147–3154.PubMedGoogle Scholar
  80. 80.
    Miller, R. A., Maloney, D. G., McKillop, J., and Levy, R. (1981) In vivo effects of murine hybridoma monoclonal antibody in a patient with T cell leukaemia. Blood 58, 78–86.PubMedGoogle Scholar
  81. 81.
    Primus, F. J., Bennett, S. J., Kim, E. E., DeLand, F. H., Zahn, M. C., and Goldenberg, D. M. (1980) Circulating immune complexes in cancer patients receiving goat radiolocalising antibodies to carcinoembryonic antigen. Cancer Res. 40, 497–501.PubMedGoogle Scholar
  82. 82.
    Bosslet, K., Steinstrasser, A., Schwarz, A., Harthus, H. P., Luben, G., Kuhlmann, L., and Sedlacek, H. H. (1988) Quantitative considerations supporting the irrelevance of circulating serum CEA for the immunoscintigraphic visualization of CEA expressing carcinomas. Eur. J. Nucl. Med. 14, 523–528.CrossRefPubMedGoogle Scholar
  83. 83.
    Stevenson, G. T., Glennie, M. J., Hamblin, T. J., Lane, A. C., and Stevenson, F. K. (1988) Problems and prospects in the use of lymphoma idiotypes as therapeutic targets. Int. J. Cancer Suppl. 3, 9–12.CrossRefGoogle Scholar
  84. 84.
    Mason, D. W. and Williams, A. F. (1980) The kinetics of antibody binding to membrane antigens in solution and at the cell surface. Biochem. J. 187, 1–20.PubMedGoogle Scholar
  85. 85.
    Rostock, R. A., Klein, J. L., Kopher, K. A., and Order, S. E. (1984) Variables affecting the tumor localization of 131 I-anti-ferritin in experimental hepatoma. Am. Clin. Oncol. 6, 9–18.CrossRefGoogle Scholar
  86. 86.
    Eger, R. R., Covell, D. G., Carrasquillo, J. A., Abrams, P. G., Foon, K. A., Reynolds, J. C., Schroff, R. W., Morgan, A. C., Larson, S. M., and Weinstein, J. N. (1987) Kinetic model for the biodistribution of an 111Indium-labeled monoclonal antibody in humans. Cancer Res. 47, 3328–3336.PubMedGoogle Scholar
  87. 87.
    Murray, J. L., Lamki, L. M., Shanken, L. J., Blake, M. E., Plager, C. E., Benjamin, R. S., Schweighardt, S., Unger, M. W., and Rosenblum, M. G. (1988) Immuno-specific saturable clearance mechanisms for Indium-111-labeled anti-melanoma monoclonal antibody 96. 5 in humans. Cancer Res. 48, 4417–4422.PubMedGoogle Scholar
  88. 88.
    Carrasquillo, J. A., Abrams, P. G., Schroff, R. W., Reynolds, J. C., Woodhouse, C. S., Morgan, A. C., Keenan, A. M., Foon, K. A., Perentis, P., Marshall, S., Horowitz, M., Szymendera, J., Englert, J., Oldham, R. K., and Larson, S. M. (1988) Effect of antibody dose on the imaging and biodistribution of Indium-111 9.2.27 anti-melanoma monoclonal antibody. Nucl. Med. 29, 39–17.Google Scholar
  89. 89.
    Chabot, G. G., Bissery, M.-C., Corbett, T. H., Rutkowski, K., and Baker, L. H. (1989) Pharmacodynamics and causes of dose-dependent pharmacokinetics of flavone-8-acetic acid (LM-975; NSC-347512) in mice. Cancer Chemother. Pharmacol. 24, 15–22.PubMedGoogle Scholar
  90. 90.
    Chow, D. D., Essien, H. E., Padki, M. M., and Hwary, K. J. (1989) Targeting small unilamellar liposomes to hepatic parenchymal cells by dose effect. J. Pharmacol. Exp. Ther. 248, 506–513.PubMedGoogle Scholar
  91. 91.
    Byers, V. S., Pimm, M. V., Pawluczyk, I. Z., Lee, H. M., Scannon, P. J., and Baldwin, R. W. (1987) Biodistribution of ricin-antibody conjugates and influence of hepatic blocking agents. Cancer Res. 47, 5277–5283.PubMedGoogle Scholar
  92. 92.
    Covell, D. G., Barbet, J., Holton, O. D., Black, C. D. V., Parker, R. J., and Weinstein J. N. (1986) Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. Cancer Res. 46, 3969–3978.PubMedGoogle Scholar
  93. 93.
    Oie, S. and Tozer, T. N. (1979) Effect of altered plasma protein binding on appar-ent volume of distribution. J. Pharm. Sci. 68, 1203–1205.CrossRefPubMedGoogle Scholar
  94. 94.
    Rowland, M. (1984) Physiologic pharmacokinetic models: relevance, experience and future trends. Drug Metab. Rev. 15, 55–74.CrossRefPubMedGoogle Scholar
  95. 95.
    DiStefano, J. J. and Chang, R. F. (1971) Computer simulation of thyroid hormone binding, distribution, and disposal dynamics in man. Am. J. Physiol. 221, 1529–1544.PubMedGoogle Scholar
  96. 96.
    Ishikawa, H., Maeda, T., Hikita, H., and Miyatake, K. (1988) The computerised derivation of rate equations for enzyme reactions on the basis of the pseudo-steady-state assumption and the rapid-equilibrium assumption. Biochem. J. 251, 175–181.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  1. 1.Department of Clinical OncologyDerbyshire Royal InfirmaryDerbyUK

Personalised recommendations