Skip to main content

Preparation of Recombinant RNase Single-Chain Antibody Fusion Proteins

  • Protocol
Drug Targeting

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 25))

  • 665 Accesses

Abstract

Selective cytotoxicity is an important goal of specific drug targeting. Toward this end, toxins isolated primarily from higher plants and bacteria have been coupled to monoclonal antibodies (MAbs) and evaluated for their clinical efficacy in cancer, AIDS, and immunological diseases (1,2). Immune responses against murine monoclonal antibodies MAbs (3,4) and antitoxin antibodies have been detected in both animals and humans treated with immunotoxins (ITs) (57) and present a major obstacle to the successful application of this technology. Although development of humanized antibodies have alleviated some of these effects (8, and references therein), the toxins themselves remain a problem. Consequently, the identification of human proteins to be used as components of immunoconjugates is highly desirable

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vitetta, E. S., Thorpe, P. E., and Uhr, J. W. (1993) Immunotoxins: magic bullets or misguided missiles. TIPS 14, 148–154.

    CAS  PubMed  Google Scholar 

  2. Brinkmann, U. and Pastan, I. (1994) Immunotoxins against cancer. Biochim. Biophys. Acta 1198, 27–45.

    CAS  PubMed  Google Scholar 

  3. Sawler, D. L., Bartholomew, R. M., Smith, L. M., and Dillman, R. (1985) Human immune response to multiple injections of murine monoclonal IgG. J. Immunol 135, 1530–1535.

    Google Scholar 

  4. Schroff, R. W., Foon, K. A., Beatty, S. M., Oldham, R., and Morgan, A. (1985) Human anti-murine immunoglobulin response in patients receiving monoclonal antibody therapy. Cancer Res 45, 879–885.

    CAS  PubMed  Google Scholar 

  5. Rybak, S. M. and Youle, R. J. (1991) Clinical use of immunotoxins: monoclonal antibodies conjugated to protein toxins. Immunol. Allergy Clin. N. Am 11(2), 359–380.

    Google Scholar 

  6. Harkonen, S., Stoudemire, J., Mischak, R., Spitler, L., Lopez, H., and Scannon, P. (1987) Toxicity and immunogenicity of monoclonal antimelanoma antibody-ricin A chain immunotoxins in rats. Cancer Res 47, 1377–1385.

    CAS  PubMed  Google Scholar 

  7. Hertler, A. (1988) Human response to immunotoxins, in Immunotoxins (Frankel, A. E, ed), Kluwer, Boston, MA, pp. 475–480.

    Google Scholar 

  8. Khazaeli, M. B., Conry, R. M., and LoBuglio, A. F. (1994) Human immune response to monoclonal antibodies. J. Immunother 15, 42–52.

    Article  CAS  Google Scholar 

  9. Beintema, J. J., Schuller, C., Irie, M., and Carsana, A. (1988) Molecular evolution of the ribonuclease superfamily. Prog. Biophys. Mol. Biol 51, 165–192.

    Article  CAS  PubMed  Google Scholar 

  10. Gleich, G. J., Loegering, D. A., Bell, M. P., Checkel, J. L., Ackerman, S. J., and McKean, D. J. (1986) Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc. Natl. Acad. Sci. USA 83, 3146–3150.

    Article  CAS  PubMed  Google Scholar 

  11. Strydom, D. J., Fett, J. W., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F., and Vallee, B. L. (1985) Amino acid sequence of human tumor derived angiogenin. Biochemistry 24, 5486–5494.

    Article  CAS  PubMed  Google Scholar 

  12. Kurachi, K., Davie, E. W., Strydom, D. J., Riordan, J. F., and Vallee, B. L. (1985) Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24, 5494–5499.

    Article  CAS  PubMed  Google Scholar 

  13. Fett, J. W., Strydom, D. J., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F., and Vallee, B. L. (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24, 5480–5486.

    Article  CAS  PubMed  Google Scholar 

  14. St. Clair, D. K., Rybak, S. M., Riordan, J. F., and Vallee, B. L. (1987) Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes. Proc. Natl. Acad. Sci. USA 84, 8330–8334.

    Article  CAS  PubMed  Google Scholar 

  15. Saxena, S. K., Rybak, S. M., Winkler, G., Meade, H. M., McGray, P., Youle, R. J., and Ackerman, E. J. (1991) Comparison of RNases and toxins upon injection into Xenopus oocytes. J. Biol. Chem 266, 21,208–21,214.

    CAS  PubMed  Google Scholar 

  16. Rybak, S. M., Saxena, S. K., Ackerman, E. J., and Youle, R. J. (1991) Cytotoxic potential of RNase and RNase hybrid proteins. J. Biol. Chem 266, 21,202–21, 207.

    CAS  PubMed  Google Scholar 

  17. Newton, D. L., Ilercil, O., Laske, D. W., Oldfield, E., Rybak, S. M., and Youle, R. J. (1992) Cytotoxic ribonuclease chimeras: targeted tumoricidal activity in vitro and in vivo. J. Biol. Chem 267, 19,572–19,578.

    CAS  PubMed  Google Scholar 

  18. Rybak, S. M., Hoogenboom, H. R., Meade, H., Raus, J. C. M., Schwartz, D., and Youle, R. J. (1992) Humanization of immuntoxins. Proc. Natl. Acad. Sci. USA 89, 3165–3169.

    Article  CAS  PubMed  Google Scholar 

  19. Newton, D. L., Nicholls, P. J., Rybak, S. M., and Youle, R. J. (1994) Expression and characterization of recombinant human eosinophil-derived neurotoxin anti-transferrin sFv. J. Biol. Chem 269, 26,739–26,745.

    CAS  PubMed  Google Scholar 

  20. Newton, D. L., Xue, Y., Olsen, K. A., Fett, J. W., and Rybak, S. M. (1996) Angiogenin single-chain immunofusions: influence of peptide linkers and spacers between fusion protein domains. Biochemistry 35, 545–553.

    Article  CAS  PubMed  Google Scholar 

  21. Zewe, M., Rybak, S., Dubel, S., Coy, J., Welschof, M., Newton, D., and Little, M. (1997) Cytotoxicity of a human pancreatic RNase A immunotoxin. Immunotechnology 3, 127–136.

    Article  CAS  PubMed  Google Scholar 

  22. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., Lee, T., Pope, S. H., Riordan, G. S., and Whitlow, M. (1988) Single-chain antigen-binding proteins. Science 242, 423–426.

    Article  CAS  PubMed  Google Scholar 

  23. Huston, J. S., Mudgett-Hunter, M., Tai, M. S., McCartny, J., Warren, F., Haber, E., and Oppermann, H. (1991) Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol 203, 46–88.

    Article  CAS  PubMed  Google Scholar 

  24. Horten, R. M., Cai, Z., Ho, S. N., and Pease, L. R. (1990) Gene splicing by overlay extension: tailor made genes using the polymerase chain reaction. BioTechniques 8, 528–535.

    Google Scholar 

  25. Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60–89.

    Article  CAS  PubMed  Google Scholar 

  26. Horton, R. (1993) In vitro recombination and mutagenesis of DNA; SOEing together tailor-made genes, in Methods in Molecular Biology, vol. 15: PCR Protocols: Current Methods and Applications (White, B. A., ed.), Humana, Totowa, NJ, pp. 251–261.

    Google Scholar 

  27. Wehrli, W., Knusel, F., Schmid, K., and Staehelin, M. (1968) Interaction of rifa-mycin with bacterial RNA polymerase. Proc. Natl. Acad. Sci. USA 61, 667–673.

    Article  CAS  PubMed  Google Scholar 

  28. Worrall, D. M. (1994) Extraction of recombinant protein from bacteria, in Methods in Molecular Biology, vol. 59: cDNA Library Protocols (Cowell, I. G. and Austin, C. A., eds.), Totowa, NJ, pp. 31–37.

    Google Scholar 

  29. Buchner, J., Pastan, I., and Brinkmann, U. (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single chain immunotoxins from renaturation of bacterial inclusion bodies. Anal. Biochem 205, 263–270.

    Article  CAS  PubMed  Google Scholar 

  30. Brinkmann, U., Buchner, J., and Pastan, I. (1992) Independent domain folding of Pseudomonas exotoxin and single-chain immunotoxins: influence of interdomain connections. Proc. Natl. Acad. Sci. USA 89, 3075–3079.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Newton, D.L., Rybak, S.M. (2000). Preparation of Recombinant RNase Single-Chain Antibody Fusion Proteins. In: Francis, G.E., Delgado, C. (eds) Drug Targeting. Methods in Molecular Medicine™, vol 25. Humana Press. https://doi.org/10.1385/1-59259-075-6:77

Download citation

  • DOI: https://doi.org/10.1385/1-59259-075-6:77

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-531-7

  • Online ISBN: 978-1-59259-075-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics