Drug Targeting pp 241-254 | Cite as

14 Immunotargeting of Catalase to the Pulmonary Vascular Endothelium

Part of the Methods in Molecular Medicine™ book series (MIMM, volume 25)


Hydrogen peroxide formed in the lung tissue in ischemia/reperfusion or released from activated leukocytes causes oxidative injury of the vascular endothelial cells (1, 2, 3). H2O2-degrading enzyme, catalase, has been extensively explored in order to protect cells and tissues against H2O2-mediated injury (4). Catalase, however, has short lifetime in the bloodstream and provides only marginal protective effect after intravascular administration in animals (5). Catalase modification (conjugation with polyethylene glycol (6) or encapsulation in liposomes [7]), prolongs catalase lifetime in the circulation and facilitate its cellular uptake. These modifications, however, do not provide it with an affinity to the endothelial cells. In order to provide catalase with such an affinity, catalase could be chemically conjugated with a carrier antibodies recognizing the surface endothelial antigens (8). A monoclonal antibody (MAb) against such an antigen, angiotensin-converting enzyme (anti-ACE MAb 9B9, produced by Dr. Sergei M. Danilov [9]), accumulates in the pulmonary endothelium after systemic injection (10). Therefore, MAb 9B9 may serve as an affinity carrier for targeting of catalase to the pulmonary endothelial cells, for specific augmentation of their antioxidative defense.


Pulmonary Uptake Immobilize Antigen Intravascular Administration Biotin Derivative Anhydrous Dimethyl Formamide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fantone, J. C. and Ward, P. A. (1982) Role of oxygen-derived free radicals and metabolites in leukocytes-dependent inflammatory reactions. Am. J. Pathol. 107, 397–424.Google Scholar
  2. 2.
    Fisher, A. B., Dodia, C., Tan, Z., Ayene, I., and Eckenhoff, R. G. (1991) Oxygendependent lipid peroxidation during lung ischemia. J. Clin. Invest. 88, 674–679.CrossRefPubMedGoogle Scholar
  3. 3.
    bSchraufstatter, I., Revack, S., and Cochrane, C. (1984). Proteases and oxidants in experimental pulmonary inflammatory injury. J. Clin. Invest. 73, 1175–1184.CrossRefPubMedGoogle Scholar
  4. 4.
    Greenwald, E. (1990) Superoxide dismutase and catalase as therapeutic agents for human diseases. Free Rad. Biol. Med. 8, 201–209.CrossRefPubMedGoogle Scholar
  5. 5.
    Turrens, J. F., Crapo, J. D., and Freeman, B. A. (1984) Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. J. Clin. Invest. 73, 87–95.CrossRefPubMedGoogle Scholar
  6. 6.
    Beckman, J. S., Minor, R. L., White, C. W., Repine, J. E., Rosen, G. M., and Freeman, B. A. (1988) Superoxide dismutase and catalase conjugated with polyethy lene glycole increase endothelial enzyme activity and oxidant resistance. J. Biol. Chem. 263, 6884–6892.PubMedGoogle Scholar
  7. 7.
    Freeman, B. A., Young, S. L., and Crapo, J. D. (1983) Liposome-mediated augmentation of superoxide dismutase in endothelial cells prevents oxygen injury. J. Biol. Chem. 258, 12,534–12,542.PubMedGoogle Scholar
  8. 8.
    Sakharov, D. V., Muzykantov, V. R., Domogatsky, S. P., and Danilov, S. M. (1987) Protection of cultured endothelial cells from hydrogen peroxide by antibody-conjugated catalase. Biochim. Biophys. Acta 930, 140–144.CrossRefPubMedGoogle Scholar
  9. 9.
    Danilov S., Allikmets, E., Sakharov, I., Dukhanina, E., and Trakht, I. (1987) Monoclonal antibodies against ACE. Biotechnol. Appl. Biochem. 9, 312–322.Google Scholar
  10. 10.
    Muzykantov V. and Danilov, S. (1995) Targeting of radiolabeled monoclonal antibody against ACE to the pulmonary endothelium, in Targeted Delivery of Imaging Agents (Torchilin, V., ed.), CRC, Boca Ration, FL, pp. 465–485.Google Scholar
  11. 11.
    Green, M. (1975) Avidin, in Advances in Protein Chemistry (Afunsen, C., Edsall, J., and Richards, F., eds.), Academic, New York, pp. 85–133.Google Scholar
  12. 12.
    Wilchek, M. and Bayer, E. (1988) The avidin-biotin complex in bioanalytical research. Anal. Biochem. 171, 1–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Paganelli, G., Magnani, P., Belloni, C., Siccardi, A., and Fazio, F. (1992) Twostep tumor targeting in ovarian cancer patients using biotinylated monoclonal antibodies and radioactive streptavidin. Eur. J. Nucl. Med. 19, 322–329.CrossRefPubMedGoogle Scholar
  14. 14.
    Taylor, R., Sutherland, W., Reist, C., Webb, D. J., Wright, S., and Labunguen, R. (1991) Use of heteropolymeric monoclonal antibodies to attach antigens to the C3b receptor of human erythrocytes: a potential therapeutic treatment. Proc. Natl. Acad. Sci. USA 88, 3305–3309.CrossRefPubMedGoogle Scholar
  15. 15.
    Bickel, U., Yoshikawa, T., Landaw, E., Faul, K., and Pardridge, W. (1993) Pharmacological effects in vivo in brain by vector-mediated peptide drug delivery. Proc. Natl. Acad. Sci. USA 90, 2618–2622.CrossRefPubMedGoogle Scholar
  16. 16.
    Wu, D., Boado, R., and Pardridge, W. (1996) Complete inactivation of target mRNA by biotinylated antisense oligonucleotide-avidin conjugates. J. Pharm. Exp. Therap. 276, 206–211.Google Scholar
  17. 17.
    Muzykantov, V., Gavriljuk, V., Reinecke, A., Atochina, E., Kuo, A., Barnathan, E., and Fisher, A. (1995) The functional effects of biotinylation of anti-AEC monoclonal antibody in terms of targeting in vivo. Anal. Biochem. 226, 279–287.CrossRefGoogle Scholar
  18. 18.
    Muzykantov, V., Atochina, E., Gavriljuk, V., Danilov, S., and Fisher, A. (1994) Immunotargeting of streptavidin to the pulmonary endothelium. J. Nucl. Med. 35, 1358–1365.PubMedGoogle Scholar
  19. 19.
    Muzykantov, V., Atochina, E., Ischiropoulos, H., Danilov, S., and Fisher, A. (1996) Immunotargeting of antioxidant enzymes to the pulmonary endothelium. Proc. Natl. Acad. Sci. USA 93, 5213–5218.CrossRefPubMedGoogle Scholar
  20. 20.
    Muzykantov, V. (1997) Conjugation of catalase to a carrier antibody via streptavidin-biotin cross-linker. Biotechnol. Appl. Biochem. 26, 103–109.PubMedGoogle Scholar
  21. 21.
    Danilov S., Muzykantov, V., Martynov, A., Atochina, E., Sakharov, I., Trakht, I., and Smirnov, V. (1991) Lung is the target organ for a monoclonal antibody to angiotensin-converting enzyme. Lab. Invest. 64, 118–124.PubMedGoogle Scholar
  22. 22.
    Danilov, S., Atochina, E., Hiemish, H., Churakova T., Moldobayeva, A., Sakharov, I., Deichman, G., Ryan, U., and Muzykantov, V. (1994) Interaction of monoclonal antibody to ACE with antigen in vitro and in vivo. Int. Immunol. 6, 1153–1160.CrossRefPubMedGoogle Scholar
  23. 23.
    Muzykantov, V., Atochina, E., Granger, D., and Fisher, A. (1997) ICAM-1directed delivery of catalase to the pulmonary vasculature. Am. J. Resp. Crit. Care Med. 155(4), A192.Google Scholar
  24. 24.
    Atochina, E., Balyasnikova, I., Danilov, S., Granger, D., Fisher, A., and Muzykantov, V. (1998) Immunotargeting of catalase ACE and ICAM-1 protects perfused rat lungs against oxidative stress. Am. J. Physiol. 275, (Lung Cell. Mol. Physiol. 19)L806–L817.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  1. 1.IFEMUniversity of Pennsylvania Medical CenterPhiladelphia

Personalised recommendations