Advertisement

Drug Targeting pp 227-239 | Cite as

Antibody-Bearing Liposomes as Chloroquine Vehicles in Treatment of Murine Malaria

Protocol
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 25)

Abstract

Malaria is a serious public health problem that affects about 300-500 million people and claims 1.5-2.7 million deaths every year. One-third of all humans live in zones where they risk catching it (1). The situation is aggravated because the malarial parasites are rapidly developing resistance to the existing antimalarial drugs, like chloroquine (2), when given in classical pharmaceutical forms. Studies on the molecular basis of chloroquine resistance suggest that enhanced active efflux of the drug from the cells infected with resistant parasite strain prevents drug accumulation to toxic levels within the cytosol of the infected erythrocytes (3, 4, 5). It has been shown that erythrocytes infected with chloroquine-resistant parasite accumulate less chloroquine than those with sensitive parasites (6,7). Furthermore, inhibiting the chloroquine efflux by Ca2+-channel blockers render the resistant cells fully sensitive to chloroquine (8), indicating that the antimalarial activity of the chloroquine is directly related to its concentration within the parasite food vacuole (9). The mechanism by which this concentration effect is achieved is unclear, but it is believed to involve binding to a putative chloroquine receptor (10).

Keywords

Antimalarial Activity Infected Erythrocyte Malarial Parasite Sodium Iodide Sodium Cyanoborohydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Butler, D., Maurice, J., and O’Brien, C. (1997) Time to put malaria control on the global agenda. Nature 386, 535–540.CrossRefPubMedGoogle Scholar
  2. 3.
    Ward, S. A. (1988) Mechanisms of the chloroquine resistance in malaria chemotherapy. Trends Pharmacol. Sci. 9, 241–246.CrossRefPubMedGoogle Scholar
  3. 4.
    Cowman, A. F. (1991) The P-glycoprotein homologues of Plasmodium falciparum:are they involved in chloroquine resistance? Parasitol. Today 7, 70–76.CrossRefPubMedGoogle Scholar
  4. 5.
    Martin, S. K. (1993) Chloroquine-resistance Plasmodium falciparum and the MDR phenotype. Parasitol. Today 9, 278,279.CrossRefGoogle Scholar
  5. 6.
    Macomber, P. B., O’Brien, R. L., and Hahn, F. E. (1966) chloroquine: physiological basis of drug resistance in Plasmodium berghei. Science 152, 1374.CrossRefPubMedGoogle Scholar
  6. 7.
    Verdier, F., Le Bras, J., Clavier, F., Hatin, I., and Blayo, M. (1985) Chloroquine uptake by Plasmodium falciparum-infected human erythrocytes during in vitro culture and its relationship to chloroquine resistance. Antimicrob. Agents Chemother. 27 (4), 561–564.PubMedGoogle Scholar
  7. 8.
    Martin, S. K., Oduola, A. M. J., and Milhous, W. K. (1987) Reversal of chloroquine resistance in Plasmodium falciparum by verapamil Science 235, 899–901.CrossRefPubMedGoogle Scholar
  8. 9.
    Fitch, C. D. (1969) Chloroquine resistance in malaria: a deficiency of chloroquine binding. Proc. Natl. Acad. Sci. USA 64(4), 1181–1187.CrossRefPubMedGoogle Scholar
  9. 10.
    Chan, A. C., Chevli, R., and Fitch, C. D. (1980) Ferriprotoporphyrin IX fulfils the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 19, 1543–1549.CrossRefGoogle Scholar
  10. 11.
    Green, R. and Widder, K. J. (1987) Methods in Enzymology, Drug and Enzyme Targeting, Vol. 149, Academic, San Diego, CA, pp. 51–213.Google Scholar
  11. 12.
    Ram, B. P. and Tyle, P. (1987) Immunoconjugates: applications in targeted drug delivery for cancer therapy. Pharm. Res. 4(3), 181–188.CrossRefPubMedGoogle Scholar
  12. 13.
    Ranade, V. V. (1991) Drug delivery systems. 6. Transdermal drug delivery. J. Clin. Pharmacol. 31(5), 401–418.PubMedGoogle Scholar
  13. 14.
    Agarwal, A., Kandpal, H., Gupta, H. P., Singh, N. B., and Gupta, C. M. (1994) Tuftsin-bearing liposomes as refampin vehicles in treatment of tuberculosis in mice. Antimicrob. Agents Chemother. 38, 588–593.PubMedGoogle Scholar
  14. 15.
    Gregoriadis, G., ed. (1988) Liposomes as Drug Carriers: Recent Trends and Progress. Wiley, Chichester, UK.Google Scholar
  15. 16.
    Wang, C. Y. and Huang, L. (1989) Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry 28(24), 9508–9514.CrossRefPubMedGoogle Scholar
  16. 17.
    Ghosh, P. C. and Bachhawat, B. K. (1991) Targeting of liposomes to hepatocytes, in Liver Diseases: Diagnosis and Therapy Using Specific Receptor and Ligands (Wu, G. Y. and Wu, C. H., eds.), Marcel Dekker, New York, pp. 87–103.Google Scholar
  17. 18.
    Pagano, R. E. and Weinstein, J. N. (1978) Interactions of liposomes with mammalian cells. Annu. Rev. Biophys. Bioeng. 7, 435–468.CrossRefPubMedGoogle Scholar
  18. 19.
    Eytan, G. D., Broza, R., Notsani, B., Dachir, D. and Gad, A. E. (1982) Interaction of acidic liposomes with red blood cells. Induction of endocytosis and shedding of particles. Biochim. Biophys. Acta 689, 464–474.CrossRefPubMedGoogle Scholar
  19. 20.
    Singhal, A., Bali. A, and Gupta, C. M. (1986) Antibody-mediated targeting of liposomes to erythrocytes in whole blood. Biochim. Biophys. Acta 88072–77.PubMedGoogle Scholar
  20. 21.
    Singhal, A. and Gupta, C. M. (1986) Antibody-mediated targeting of liposomes to red cells in vivo. FEBS Lett. 201, 321–326.CrossRefPubMedGoogle Scholar
  21. 22.
    Agrawal, A. K., Singhal, A., and Gupta, C. M. (1987) Functional drug targeting to erythrocytes in vivo using antibody-bearing liposomes as drug vehicles. Biochem. Biophys. Res. Commun. 148, 357–361CrossRefPubMedGoogle Scholar
  22. 23.
    Chandra, S., Agrawal, A. K., and Gupta, C. M. (1991) Chloroquine delivery to erythrocytes in Plasmodium berghei-infected mice using antibody-bearing liposomes as drug vehicles. J. Biosci. 16, 137–144.CrossRefGoogle Scholar
  23. 24.
    Peeters, P. A. M., Huiskamp, C. W. E. M., Eling, W. M. C., and Crommelin, D. J. A. (1989) Chloroquine containing liposomes in the chemotherpaty of murine malaria. Parasitology 98, 381–386.CrossRefPubMedGoogle Scholar
  24. 25.
    Owais, M., Varshney, G. C., Choudhury, A., Chandra, S., and Gupta, C. M. (1995) Chloroquine encapsulated in malaria-infected erythrocytes-specific antibody-bearing liposomes effectively controls chloroquine-resistant Plasmodium bergheiinfections in mice. Antimicrob. Agents Chemother. 39, 180–184.PubMedGoogle Scholar
  25. 26.
    Sherman, I. W. (1985) Membrane structure and function of malaria parasites and the infected erythrocytes. Parasitology 91, 609–645.CrossRefPubMedGoogle Scholar
  26. 27.
    Sherman, I. W. and Winogard, E. (1990) Antigens on Plasmodium falciparuminfected erythrocytes are not parasite derived. Parasitol. Today 6, 317–320.CrossRefPubMedGoogle Scholar
  27. 28.
    Howard, R. J. and Pasloske, B. L. (1993) Target antigens for asexual malaria vaccine development. Parasitol. Today 9, 369–372.CrossRefPubMedGoogle Scholar
  28. 29.
    Newbold, C. I. and Marsh, K. (1990) Antigens on the Plasmodium falciparum infected erythrocytes surface are parasite derived. A reply. Parasitol. Today 6, 320–322.CrossRefPubMedGoogle Scholar
  29. 30.
    Gupta, C. M. and Bali, A. (1981) Carbamyl analogs of phosphatidylcholines: synthesis, interaction with phospholipases and permeability behaviour of their liposomes. Biochim. Biophys. Acta 663, 506–515.PubMedGoogle Scholar
  30. 31.
    Stocker, J. W., Forstes, H. K., Miggiano, V., Stahli, C., Straiger, G., Takacs, B., and Staechelin, T. (1982) Generation of two mouse myeloma cell lines “PAI” and “PAI-O” for hybridroma production. Res. Disclosure 217, 155–157.Google Scholar
  31. 32.
    Perlman, H., Berzins, K., Wahlgren, M., Carlsson, J., Bjorkmin, A., Patarroyo, M. E., and Perlmaann, P. (1984) Antibodies in malarial sera to parasite antigens in the membrane of erythrocytes infected with early asexual stages of Plasmodium falciparum J. Exp. Med. 159, 1686–1704.CrossRefGoogle Scholar
  32. 33.
    Agrawal, A. K. and Allen, T. M. (1992) Attachment of antibodies to pegylated liposomes by the biotin-avidin method. Biophys. J. 61, A493.Google Scholar
  33. 34.
    Allen, T. M., Agrawal, A. K., Ahmad, I., Hansen, C. B., and Zalipsky, S. (1994) Antibodymediated targeting of long-circulating (StealthR) liposomes. J. Lipos. Res. 4 (1), 1–25.CrossRefGoogle Scholar
  34. 35.
    Francis, G. E., Delgado, C., Fisher, D., Malik, F., and Agrawal, A. K. (1996) Polyethylene glycol modification: relevance of improved methodology to tumour targeting. J. Drug Targeting 3, 321–340.CrossRefGoogle Scholar
  35. 36.
    Coune, A. (1988) Liposomes as drug delivery system in the treatment of infectious diseases. Potential applications and clinical experience. Infection 16, 141–147.CrossRefPubMedGoogle Scholar
  36. 37.
    Guru, P. Y., Agrawal, A. K., Singha, U. K., Singhal, A., and Gupta, C. M. (1989) Drug targeting in Leishmania donovani infections using tuftsin-bearing liposomes as drug vehicles. FEBS Lett. 245, 204–208.CrossRefPubMedGoogle Scholar
  37. 38.
    Gupta, C. M., Puri, A., Jain, R. K., Bali, A., and Anand, N. (1986) Protection of mice against Plasmodium berghei infection by a tuftsin derivative. FEBS Lett. 205, 351–354.CrossRefPubMedGoogle Scholar
  38. 39.
    Garvey, J. S., Natalie, E. C., and Sussadoff, D. H. (1981) Hemagglutination in Methods in Immunology. Benjamin/Cummings Publishing Co., Menlo Park, CA, pp. 347–371.Google Scholar
  39. 40.
    Warhurst, D. C. and Folwell, R. O. (1968) Measurement of growth rate of the erythrocytes stages of the Plasmodium berghei and comparisons of the potency of inocula after various treatments. Ann. Trop. Med. Parasitol. 62, 349–360.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  1. 1.PolyMASC Pharmaceuticals plcLondonUK
  2. 2.Central Drug Research InstituteLucknowIndia

Personalised recommendations