Drug Targeting pp 193-214 | Cite as

11 Targeting HIV-Infected Cells

Part of the Methods in Molecular Medicine™ book series (MIMM, volume 25)


This chapter will describe methods that may be used to deliver agents to HIV-infected cells. These materials may be used for therapeutic or experimental purposes. There are several general approaches to delivering compounds to human immunodeficiency cells (HIV)-infected cells. All cells may be exposed to materials that only have an effect or become activated in HIV-infected cells. Examples include drugs that are specific for HIV-encoded enzymes, such as reverse transcriptase or protease, or genes that are expressed under the control of the HIV-LTR. Lack of specificity is a major limitation to this approach; for example, reverse transcriptase inhibitors also inhibit cellular DNA polymerases and cellular transcription factors clan initiate low-level-transcription off the HIV-LTR, even in the absence of tat. The alternative approach, which is the subject of this chapter, is to target the materials specifically to the infected cells. We have used monoclonal antibodies (MAbs) to deliver toxins to HIV-infected cells, but others have used this approach to deliver antiviral agents, liposomes, and even genes.


Infected Cell Infectious Virus Acquire Immune Deficiency Syndrome Patient Infected Cell Line Pokeweed Antiviral Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pincus, S. H. and Tolstikov, V. V. (1995) Anti-human immunodeficiency virus immunoconjugates. Adv. Pharmacol. 32, 205–242.CrossRefPubMedGoogle Scholar
  2. 2.
    Tung, J. S., Yoshiki, T., and Fleissner, E. (1976) A core polyprotein of murine leukemia virus on the surface of mouse leukemia cells. Cell 9, 573–578.CrossRefPubMedGoogle Scholar
  3. 3.
    Pincus, S. H., Cole, R., Ireland, R., MacAtee, F., Fujisawa, R., and Portis, J. (1995) Protective efficacy of non-neutralizing monoclonal antibodies in acute infection with murine leukemia virus. J. Virol. 69, 7152–7158.PubMedGoogle Scholar
  4. 4.
    Shang, F., Huang, H., Revesz, K., Chen, H.-C., Herz, R., and Pinter, A. (1991) Characterization of monoclonal antibodies against the human immunodeficiency virus matrix protein p17: identification of epitopes exposed at the surfaces of infected cells. J. Virol. 65, 4798–4804.PubMedGoogle Scholar
  5. 5.
    Laurent, A. G., Krust, B., Rey, M.-A., Montagnier, L., and Hovanessian, A. G. (1989) Cell surface expression of several species of human immunodeficiency virus type 1 major core protein. J. Virol. 63, 4074–4078.PubMedGoogle Scholar
  6. 6.
    Papsidero, L._D., Sheu, M., and Ruscetti, F. W. (1989) HIV-1 neutralizing monoclonal antibodies that react with the p17 core protein: characterization and epitope mapping. J. Virol. 63, 267–272.PubMedGoogle Scholar
  7. 7.
    Pincus, S. H., Wehrly, K., Cole, R., Fang, H., Lewis, G. K., McClure, J., Conley, A. J., Wahren, B., Posner, M. R., Notkins, A. L., Tilley, S. A., Pinter, A., Eiden, L., Teintze, M., Dorward, D., and Tolstikov, V. V. (1996) In vitro effects of anti-HIV immunotoxins directed against multiple epitopes on the HIV-1 envelope gly-coprotein gp160. AIDS Res. Hum. Retrovirus 12, 1041–1051.CrossRefGoogle Scholar
  8. 8.
    Till, M. A., Zolla-Pazner, S., Gorny, M. K., Patton, J. S., Uhr, J. W., and Vitetta, E. S. (1989) Human immunodeficiency virus-infected T cells and rnonocytes are killed by monoclonal human anti-gp41 antibodies coupled to ricin A chain. Proc. Natl. Acad. Sci. USA 86, 1987–1991.CrossRefPubMedGoogle Scholar
  9. 9.
    Pincus, S. H., Cole, R. L., Hersh, E. M., Lake, D., Masulho, Y., Durda, P. J., and McClure, J. (1991) In vitro efficacy of anti-HIV immunotoxins targeted by various antibodies to the envelope protein. J. Immunol. 146, 4315–4324.PubMedGoogle Scholar
  10. 10.
    Pincus, S. H. and McClure, J. (1993) Soluble CD4 enhances the efficacy of immunotoxins directed against gp41 of the human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 90, 332–336.CrossRefPubMedGoogle Scholar
  11. 11.
    Kim, Y.-W., Fung, M. S. C., Sun, N.-C., Sun, C. R. Y., Chang, N. T., and Chang, T. W. (1990) Immunoconjugates that neutralize HIV virions kill T cells inferted with diverse strains of HIV-1. J. Immunol. 144, 1257–1262.PubMedGoogle Scholar
  12. 12.
    May, R. Finkelman, F. D., Wheeler, H. T., Uhr, J. W., and Vitetta, E. S. (1990) Evaluation of ricin A chain-containing immunotoxins directed against different epitopes on the delta-chain of cell surface-associated igD on murine B cells. J. Immunol. 144, 3637–3642.PubMedGoogle Scholar
  13. 13.
    Moore, J. P., McKeating, J. A., Huang, Y., Ashkenazi, A., and Ho, D. D. (1992) Virions of primary human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. J. Virol. 66, 235–243.PubMedGoogle Scholar
  14. 14.
    Clapham, P. R., Weber, J. N., Whitby, D., Mcintosh, K., Dalgleish, A. G., Maddon, P. J., Deen, K. C., Sweet, R. W., and Weiss, R. A. (1989) Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brarin and muscle cells. Nature 337, 368–370.CrossRefPubMedGoogle Scholar
  15. 15.
    Capon, D. J., Chamow, S. M., Mordenti, J., Marsters, S. A., Gregory, T., Mitsuya, H., Byrn, R. A., Lucas, C., Wurm, F. M., Groopman, J. E., Broder, S., and Smith, D. H. (1989) Designing CD4 immunoadhesins for AIDS therapy. Nature 337, 525–531.CrossRefPubMedGoogle Scholar
  16. 16.
    Traunecker, A., Schneider, J., Kieler, H., and Karjalainen, K. (1989) Highly efficient neutralization of HIV with recombinant CD4-immunoglobulin molecules. Nature 339, 68–70.CrossRefPubMedGoogle Scholar
  17. 17.
    Davey, R. T., Boenning, C. M., Herpin, B. R., Batts, D. H., Metcalf, J. A., Wathen, L., Cox, S. R., Polis, M. A., Kovacs, J. A., Falloon, J., Walker, R. E., Salzrnan, N., Masur, H., and Lane, H. C. (1994) Recombinant soluble CD4-pseudomonas exo-toxin, a novel immunotoxin, in the treatment of individuals infected with HIV. J. Infect. Dis. 170, 1180–1188.PubMedGoogle Scholar
  18. 18.
    Ashorn, P., Englund, G., Martin, M. A., Moss, B., and Berger, E. A. (1991) Anti-HIV activity of CD4-Pseudomonas exotoxin on infected primary human lymphocytes and monocyte/macrophages. J. Infect. Dis. 163, 703–709.PubMedGoogle Scholar
  19. 19.
    Ashorn, P., Moss, B., and Berger, E. A. (1992) Activity of CD4-Pseudomonas exotoxin against cells expressing diverse forms of the HIV and SIV envelope glycoproteins. J. AIDS 5, 70–77.Google Scholar
  20. 20.
    Berger, E. A., Chaudhary, V. K., Clouse, K. A., Jaraquemada, D., Nicholas, J. A., and Rubino, K. L. (1990) Recombinant CD4-Pseudomonas exotoxin hybrid protein displays HIV-specific cytotoxicity without affecting MHC class 11-dependent functions. AIDS Res. Hum. Retroviruses 6, 795–804.CrossRefPubMedGoogle Scholar
  21. 21.
    Winters, M. A. and Merigan, T. C. (1993) Continuous presence of CD4-PE40 is required for antiviral activity against single passage HIV isolates and infected peripheral blood mononuclear cells. AIDS Res. Hum. Retroviruses 9, 1091–1096.CrossRefPubMedGoogle Scholar
  22. 22.
    Zverev, V., Sidorov, A., Zdanovsky, A., Malushova, V., Zdanovska, N., Shukhmina, N., Anjaparidze, O., Pille, E., and Melnikova, N. (1992) Inhibition of the infectivity of HIV by different forms of CD4-diphtheria recombinant immunotoxins. VIII International Conference on AIDS, Amsterdam, The Netherlands, p. 45.Google Scholar
  23. 23.
    Kennedy, P. E., Moss, B., and Berger, E. A. (1993) Primary HIV-1 refractory to neutralization by soluble CD4 are potently inhibited by CD4-Pseudomonas exotoxin. Virology 192, 375–379.CrossRefGoogle Scholar
  24. 24.
    Aullo, P., Alcami, J., Popoff, M. R., Klatzmann, D. R., Murphy, J. R., and Boquet, P. (1992) A recombinant diphtheria toxin related human CD4 fusion protein specifically kills HIV infected cells which express gp120 but selects fusion toxin resistant cells which carry HIV. EMBO J. 11, 575–583.PubMedGoogle Scholar
  25. 25.
    Till, M. A., Ghetie, V., Gregory, T., Patzer, E. J., Porter, J. P., Uhr, J. W., Capon, D. J., and Vitetta, E. S. (1988) HIV-infected cells are killed by rCD4-ricin A chain. Science 242, 1166–1168.CrossRefPubMedGoogle Scholar
  26. 26.
    Chaudhary, V. K., Mizukami, T., Fuerst, T. R., FitzGerald, D. J., Moss, B., Pastan, I., and Berger, E. A. (1988) Selective killing of HIV-infected cells by recombinant human CD4 Pseudomonas exotoxin hybrid protein. Nature 335, 369–372.CrossRefPubMedGoogle Scholar
  27. 27.
    Berger, E. A., Clouse, K. A., Chaudhary, V. K., Chakrabarti, S., FitzGerald, D. J., Pastan, I., and Moss, B. (1989) CD4-Pseudomonas exotoxin hybrid protein blocks the spread of human immunodeficiency virus infection in vitro and is active against cells expressing the envelope glycoproteins from diverse primate immu-nodeficiency retroviruses. Proc. Natl. Acad. Sci. USA 86, 9539–9543.CrossRefPubMedGoogle Scholar
  28. 28.
    Ramachandran, R. V., Katzensteln, D. A., Wood, R., Batts, D. H., and Merigan, T. C. (1994) Failure of short-term CD4-PE40 infusions to reduce viral load in HIV infected individuals. J. Infect. Dis. 170, 1009–1013.PubMedGoogle Scholar
  29. 29.
    Allaway, G. P., Davis-Bruno, K. L., Beaudry, G. A., Garcia, E. B., Wong, E. L., Ryder, A. M., Hasel, K. W., Gauduin, M.-C., Koup, R. A., McDougal, S., and Maddon, P. J. (1995) Expression and characterization of CD4-IgG2, a novel heteroteramer that neutralizes primary HIV-1 isolates. AIDS Res. Hum. Retroviruses 11, 533–539.CrossRefPubMedGoogle Scholar
  30. 30.
    Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., and Berger, E. A. (1996) CC CKR5: a RANTES, MIP-1 receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958.CrossRefPubMedGoogle Scholar
  31. 31.
    Feng. Y., Broder, C. C., Kennedy, P. E., and Berger, E. A. (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven transmembrane G protein-coupled receptor. Science 272, 872–877.Google Scholar
  32. 32.
    Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., Mackay, C. R., LaRosa, G., Newman, W., Gerard, N., Gerard, C., and Sodroski, J. (1996) The B-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148.CrossRefPubMedGoogle Scholar
  33. 33.
    Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A., Moore, J. P., and Paxton, W. A. (1996) HIV-1 entry into CD4+cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673.CrossRefPubMedGoogle Scholar
  34. 34.
    Liu, R., Paxton, W. A., Choe, S., Ceradini, D., Martin, S. R., Horuk, R., MacDonald, M. E., Stuhimann, H., Koup, R. A., and Landau, N. R. (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multi-ply-exposed individuals to HIV-1 infection. Cell 86, 367–377.CrossRefPubMedGoogle Scholar
  35. 35.
    Ramilo, O., Bell, K. D., Uhr, J. W., and Vitetta, E. S. (1993) Role of CD25+and CD25-T cells in acute HIV infection in vitro. J. Immunol. 150, 5202–5208.PubMedGoogle Scholar
  36. 36.
    Finberg, R. W., Wahl, S. M., Allen, J. B., Soman, G., Strom, T. B., Murphy, J. R., and Nichols, J. C. (1991) Selective elimination of HIV-1-infected cells with an interleukin-2 receptor-specific cytotoxin. Science 252, 1703–1705.CrossRefPubMedGoogle Scholar
  37. 37.
    Borvak, J., Chou, C.-S., Bell, K., Van Dyke, G., Zola, H., Ramilio, O., and Vitetta, E. S. (1995) Expression of CD25 defines peripheral blood mononuclear cells with productive versus latent HIV infection. J. Immunol. 155, 3196–3204.PubMedGoogle Scholar
  38. 38.
    Borvak, J., Chou, C. S., Van Dyke, G., Rosenwirth, B., Vitetta, E. S., and Ramilo, O. (1996) The use of cyclosporine, FK506, and SDZ NIM811 to prevent CD25-quiescent peripheral blood mononuclear cells from producing human immunodeficiency virus. J. Infect. Dis. 174, 850–853.PubMedGoogle Scholar
  39. 39.
    Bell, K. D., Ramilo, O., and Vitetta, E. S. (1993) Combined use of an immunotoxin and cyclosporine to prevent both activated and quiescent peripheral blood T cells from producing type 1 human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 90, 1411–1415.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang, L. J., Waters, C. A., Poisson, L. R., Estis, L. F., and Crumpacker, C. S. (1997) The interleukin-2 fusion protein, DAB(389)1L-2, inhibits the development of infectious virus in human immunodeficiency virus type 1-infected human peripheral blood mononuclear cells. J. Infect. Dis. 175, 790–794.CrossRefPubMedGoogle Scholar
  41. 41.
    Renneisen, K., Leserman, L., Matthes, E., Schroder, H. C., and Muller, W. E. (1990) Inhibition of expression of human immunodeficiency virus-1 in vitro by antibody-targeted liposomes containing antisense RNA to the env region. J. Biol. Chem. 265, 16,337–16,342.PubMedGoogle Scholar
  42. 42.
    Zarling, J. M., Moran, P. A., Haffar, O., Sias, J., Richrnan, D. D., Spina, C. A., Myers, D. E., Kuebelbeck, V., Ledbetter, J. A., and Uckun, F. M. (1990) Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+cells by monoclonal antibodies (letter). Nature 347, 92–95.CrossRefPubMedGoogle Scholar
  43. 43.
    Erice, A., Balfour, H. H., Jr., Myers, D. E., Leske, V. L., Sannerud, K. J., Kuebelbeck, V., Irvin, J. D., and Uckun, F. M. (1993) Anti-human immunodeficiency virus type 1 activity of an anti-CD4 immunoconjugate containing pokeweeci antiviral protein. Antimicrob. Agents Chemother. 37, 835–338.PubMedGoogle Scholar
  44. 44.
    Rombi, G., Piu, G., Piro, S., Pautasso, M., Garau, G., and Palomba, A. (1992) MAB labelled liposomes as vehicles for AZT: choice of specific monoclonal antibodies for infected cells. VIII International Conference on AIDS, Amsterdam, The Netherlands, p. 129.Google Scholar
  45. 45.
    Pincus, S. H., Wehrly, K., and Chesebro, B. (1989) Treatment of HIV tissue culture infection with monoclonal antibody-ricin A chain conjugates. J. Immunol. 142, 3070–3075.PubMedGoogle Scholar
  46. 46.
    Pincus, S. H. (1996) Therapeutic potential of anti-HIIV immunotoxins. Antiviral Res. 33, 1–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Zarling, J. M., Moran, P. A., Grosmaire, L. S., McClure, J., Shriver, K., and Ledbetter, J. A. (1988) Lysis of cells infected with HIV-1 by human lymphocytes targeted with monoclonal antibody heteroconjugates. J. Immunol. 140, 2609–2613.PubMedGoogle Scholar
  48. 48.
    Till, M. A., Ghetie, V., May, R. D., Auerbach, P. C., Zolla-Pazner, S., Gorny, M. K., Gregory, T., Uhr, J. W., and Vitetta, E. S. (1990) Immunoconjugates containing ricin A chain and either human anti-gp41 or CD4 kill H9 cells infected with different isolates of HIV, but do not inhibit normal T or B cell function. J. AIDS 3, 609–614.Google Scholar
  49. 49.
    Matsushita, S., Koito, A., Maeda, Y., Hattori, T., and Takatsuki, K. (1990) Selective killing of HIV-infected cells by anti-gp 120 immunotoxins. AIDS Res. Hum. Retroviruses 6, 193–203.CrossRefPubMedGoogle Scholar
  50. 50.
    Lo, K. M. S., Biasolo, M. A., Dehni, G., Palu, G., and Haseltine, W. A. (1992) Inhibition of replication of HIV-1 by retroviral vectors expressing tat-antisense and anti-tat ribozyme RNA. Virology 190, 176–183.CrossRefPubMedGoogle Scholar
  51. 51.
    Levy-Mintz, P., Duan, L. X., Zhang, H. Z., Hu, B. C., Dornadula, G., Zhu, M. H., Kulkosky, J., Bizub-Bender, D., Skalka, A. M., and Pomerantz, R. J. (1996) Intra-cellular expression of single-chain variable fragments to inhibit early stages of the viral life cycle by targeting human immunodeficiency virus type 1 integrase. J. Virol. 70, 8821–8832.PubMedGoogle Scholar
  52. 52.
    Chen, S.-Y., Zani, C., Khouri, Y., and Marasco, W. A. (1995) Design of a genetic immunotoxin to eliminate toxin immunogenicity. Gene Therapy 2, 116–123.PubMedGoogle Scholar
  53. 53.
    Konopka, K., Harrison, G. S., Felqner, P. L., and Duzgunes, N. (1997) Cationic liposome-mediated expression of HIV-regulated luciferase and diphtheria toxin a genes in HeLa cells infected with or expressing HIV. Biochim. Biophys. Acta 1356, 185–197.CrossRefPubMedGoogle Scholar
  54. 54.
    Chu, T. H. T. and Dornburg, R. (1997) Toward highlly efficient cell-type-specific gene transfer with retroviral vectors displaying single-chain antibodies. J. Virol. 71, 720–725.PubMedGoogle Scholar
  55. 55.
    Schnell, M. J., Johnson, J. E., Buonocore, L., and Rose, J. K. (1997) Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection. Cell 90, 849–857.CrossRefPubMedGoogle Scholar
  56. 56.
    Mebatsion, T., Finke, S., Weiland, F., and Conzelmann, K. K. (1997) A CXCR4/ CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells. Cell 90, 841–847.CrossRefPubMedGoogle Scholar
  57. 57.
    Kabat, D., Kozak, S. L., Wehrly, K., and Chesebro, B. (1994) Differences in CD4 dependence for infectivity of laboratory-adapted and primary patient isolates of HIV. J. Virol. 68, 2570–2577.PubMedGoogle Scholar
  58. 58.
    Wrin, T., Loh, T. P., Vennari, J. C., Schuitemaker, H., and Nunberg, J. H. (1995) Adaptation to persistent growth in the H9 cell line renders a primary isolate of HIV-1 sensitive to neutralization by vaccine sera. J. Virol. 63, 39–48.Google Scholar
  59. 59.
    Harouse, J. M., Bhat, S., Spitalnik, S. L., Laughlin, M., Stefano, K., Silberberg, D. H., and Gonzales-Scarano, F. (1991) Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science 253, 320–323.CrossRefPubMedGoogle Scholar
  60. 60.
    Fantini, J., Cook, D. G., Nathanson, N., Spitaloik, S. L., and Gonzalez-Scarano, F. (1993) Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associateo with cell surface expression of gal-actosylceramide, a potential alternative gp120 receptor. Proc. Natl. Acad. Sci. USA 90, 2700–2704.CrossRefPubMedGoogle Scholar
  61. 61.
    Pincus, S. H. and Wehrly, K. (1990) AZT demonstrates anti-HIV-1 activity in persistently infected cell lines: implications for combination chemotherapy and immunotherapy. J. Infect. Dis. 162, 1233–1238.PubMedGoogle Scholar
  62. 62.
    Fang, H. and Pincus, S. H. (1995) Unique insertion sequence and pattern of CD4 expression in variants selected with immunotoxins from human immunodeficiency virus type 1-infected T cells. J. Virol. 69, 75–81.PubMedGoogle Scholar
  63. 63.
    Duensing, T. D., Fang, H., Dorward, Pincus, S. H. (1995) Processing of the envelope glycoprotein gp160 in immunotoxin-resistant cell lines chronically infected with HIV-1. J. Virol. 69, 7122–7131.PubMedGoogle Scholar
  64. 64.
    Chesebro, B., Wehrly, K., Nishio, J., and Perryman, S. (1992) Macrophage-tropic HIV isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J. Virol. 66, 6547–6554.PubMedGoogle Scholar
  65. 65.
    Pincus, S. H., Wehrly, K., Tschachler, E., Hayes, S. F., Buller, R. S., and Reitz, M. (1990) Variants selected by treatment of human immunodeficiency virus-infected cells with an immunotoxin. J. Exp. Med. 172, 745–757.CrossRefPubMedGoogle Scholar
  66. 66.
    Zimmerman, K. and Mannhalter, J. W. (1996) Technical aspects of quantitative competitive PCR. BioTechniques 21, 268–273.Google Scholar
  67. 67.
    Chesebro, B. and Wehrly, K. (1988) Development of a sensitive quantitative focal assay for human immunodeficiency virus infectivity. J. Virol. 62, 3779–3788.PubMedGoogle Scholar
  68. 68.
    Pincus, S. H., Wehrly, K., and Chesebro, B. (1991) Use of a focal infectivity assay for testing susceptibility of HIV to antiviral agents. BioTechniques 10, 336–342.PubMedGoogle Scholar
  69. 69.
    Chesebro, B., Wehrly, K., Metcalf, J., and Griffin, D. E. (1991) Use of a new CD4-positive HeLa cell clone for direct quantitation of infectious human immunodeficiency virus from blood cells of AIDS patients. J. Infect. Dis. 163, 64–70.PubMedGoogle Scholar
  70. 70.
    Pincus, S. H., Messer, K. G., Schwartz, D. H., Lewis, G. K., Graham, B. S., Blattner, W. A., and Fisher, G. (1993) Differences in the antibody response to human immunodeficiency virus 1 envelope glycoprotein (gp160) in infected laboratory workers and vaccinees. J. Clin. Invest. 91, 1987-1996.Google Scholar
  71. 71.
    Pincus, S. H., Messer, K. G., and Hu, S.-L. (1994) Effect of nonprotective vaccination on antibody response to subsequent human imrnunodeficiency virus infection. J. Clin. Invest. 93, 140–146.CrossRefPubMedGoogle Scholar
  72. 72.
    Pincus, S. H., Messer, K. G., Nara, P. L., Blattner, W. A., Colclough, G., and Reitz, M. (1994) Temporal analysis of the antibody response to HIV envelope protein in HIV-infected laboratory workers. J. Clin. Invest. 93, 2505–2513.CrossRefPubMedGoogle Scholar
  73. 73.
    Moore, J. P., McKeating, J. A., Weiss, R. A., and Sattentau, Q. J. (1990) Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250, 1139–1142.CrossRefPubMedGoogle Scholar
  74. 74.
    Chan, D. C., Fass, D., Berger, J. M., and Kim, P. S. (1997) Core structure of gp41 from the HIV envelope glycoproteih. Cell 89, 263–273.CrossRefPubMedGoogle Scholar
  75. 75.
    Rizzuto, D. D., Wyatt, R., Hernandez-Ramos, N., Sun, Y., Kwong, P. D., Hendrickson, W. A., and Sodroski, J. (1998) A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280, 1949–1953.CrossRefPubMedGoogle Scholar
  76. 76.
    Wyatt, R., Kwong, P. D., Desjardins, E., Sweet, R. W., Robinson, J., Hendrickson, W. A., and Sodroski, J. G. (1998) The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393, 705–711.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  1. 1.Department of MicrobiologyMontana State UniversityBozeman

Personalised recommendations