Advertisement

Drug Targeting pp 159-191 | Cite as

10 Targeting in Myocardial Infarction

Protocol
  • 579 Downloads
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 25)

Abstract

Targeting pharmaceuticals to the infarcted myocardium has two primary objectives: the diagnostic imaging of the infarcted myocardium and the delivery of therapeutic agents to compromised myocardial areas. Various diagnostic and therapeutic agents (such as radiolabeled compounds, thrombolytic enzymes, proteolytic drugs, and antioxidants) have been proposed for visualization or treatment of the infarcted myocardium. However, none of these reagents has the specificity for targeting the compromised myocardium. Therefore, the availability of a target-specific delivery system should increase the efficacy of diagnosis and therapy. Furthermore, the existence of such a targeted delivery system may pave the way for the use of new pharmaceuticals that by themselves can be harmful to normal tissues.

Keywords

Left Anterior Descend H9C2 Cell Phosphatidyl Choline Hypoxic Cell Phosphatidyl Ethanolamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Khaw, B. A. (1994) Antimyosin antibody for the diagnosis of acute myocardial infarction: experimental validation, in Monoclonal Antibodies in Cardiovascular Diseases (Khaw, B. A., Narula, J., and Strauss, H. W., eds.), Lea and Febiger, Malvern, PA, pp. 15–29.Google Scholar
  2. 2.
    Khaw, B. A., Beller, G. A., Haber, E., and Smith, T. W. (1976) Localization of cardiac myosin-specific antibody in myocardial infarction. J. Clin. Invest. 58, 439–446.CrossRefPubMedGoogle Scholar
  3. 3.
    Khaw, B. A., Fallon, J. T., Beller, G. A., and Haber, E. (1979) Specificity of localization of myosin specific antibody fragments in experimental myocardial infarction: histologic, histochemical, autoradiographic and scintigraphic studies. Circulation 60, 1527–1531.PubMedGoogle Scholar
  4. 4.
    Khaw, B. A., Scott, J., Fallon, J. T., Haber, E., and Homcy, C. (1982) Myocardial injury: quantitation by cell sorting initiated with antimyosin fluorescent spheres. Science 217, 1050–1053.CrossRefPubMedGoogle Scholar
  5. 5.
    Khaw, B. A., Beller, G. A., and Haber, E. (1978) Experimental myocardial infarct imaging following intravenous administration of iodine-131 labeled antibody (Fab’)2 fragments specific for cardiac myosin. Circulation 57, 743–750.PubMedGoogle Scholar
  6. 6.
    Khaw, B. A., Mattis, J. A., Melincoff, G., Strauss, H. W., Gold, H. K., and Haber, E. (1984) Monoclonal antibody to cardiac myosin: scintigraphic imaging of experimental myocardial infarction. Hybridoma 3, 11–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Khaw, B. A., Strauss, H. W., Carvalho, A., Locke, E., Gold, H. K., and Haber, E. (1982) Technetium-99m labeling of antibodies to cardiac myosin Fab and to human fibrinogen. J. Nucl. Med. 23, 1011–1019.PubMedGoogle Scholar
  8. 8.
    Strauss, H. W., Narula, J., and Khaw, B. A. (1994) Acute myocardial infarct imaging with technetium-99m and indium-111 antimyosin Fab, in Monoclonal Antibodies in Cardiovascular Diseases (Khaw, B. A., Narula, J., and Strauss, H. W., eds.), Lea and Febiger, Malvern, PA, pp. 30–42.Google Scholar
  9. 9.
    Johnson, L. L., Seldin, D. W., Becker, L. C., LaFrance, N. D., Liberman, H. A., James, C., Mattis, J. A., Dean, R. T., Brown, J., Reiter, A., Arneson, V., Cannon, P. J., and Berger, H. J. (1989) Antimyosin imaging in acute transmural myocardial infarction: results of a multicenter clinical trial. J. Am. Coll. Cardiol. 13, 27–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Hendel, R. C., McSherry, B. A., and Leppo, J. A. (1990) Myocardial uptake of indium-111-labeled antimyosin in acute subendocardial infarction: clinical, histochemical and autoradiographic correlation of myocardial necrosis. J. Nucl. Med. 31, 1851–1853.PubMedGoogle Scholar
  11. 11.
    Nakata, T., Sakakibara, T., Noto, T., Shoji, T., Tsuda, T., Kubota, M., Hattori, A., and Iimura, O. (1991) Myocardial distribution of indium-111 antimyosin Fab in acute inferior and right ventricular infarction: comparison with Tc-99m pyrophos-phate imaging and histological examination. J. Nucleic Med. 32, 865–867.Google Scholar
  12. 12.
    van Vlies, B., van Royen, E. A., Visser, C. A., Meyne, N. G., van Buul, M. M., Peter, R. T., and Dunning, A. J. (1990) Frequency of myocardial indium-111 antimyosin uptake after uncomplicated coronary artery bypass surgery. Am. J. Cardiol. 66, 1191–1195.CrossRefPubMedGoogle Scholar
  13. 13.
    van Vlies, B., Koch, K. T., and van Royen, E. A. (1994) Perioperative myocardial damage assessed with indium-111 antimyosin scintigraphy, in Monoclonal Antibodies in Cardiovascular Diseases (Khaw, B. A., Narula, J., and Strauss, H. W., eds.), Lea and Febiger, Malvern, PA, pp. 56–63.Google Scholar
  14. 14.
    Cummins, B., Russell, G. J., Chandler, S. T., Pears, D. J., and Cummins, P. (1990) Uptake of radioiodinated cardiac specific troponin-I antibodies in myocardial infarction. Cardiovasc. Res. 24, 317–327.CrossRefPubMedGoogle Scholar
  15. 15.
    Torchilin, V. P., Trubetskoy, V. S., Narula, J., Khaw, B. A., Klibanov, A. L., and Slinkin, M. A. (1993) Chelating polymer modified monoclonal antibodies for radioimmunodiagnostics and radioimmunotherapy. J. Contr. Release 24, 111–118.CrossRefGoogle Scholar
  16. 16.
    Torchilin, V. P., Klibanov, A. L., Slinkin, M. A., Danilov, S. M., Levitsky, D. O., and Khaw, B. A. (1989) Antibody-linked chelating polymers for immunoimaging in vivo. J. Contr. Release 11, 297–303.CrossRefGoogle Scholar
  17. 17.
    Slinkin, M. A., Klibanov, A. L., and Torchilin, V. P. (1991) Terminal-modified polylysine-based chelating polymers: highly efficient coupling to antibody with minimal loss in immunoreactivity. Bioconj. Chem. 2, 342–348.CrossRefGoogle Scholar
  18. 18.
    Trubetskoy, V. S., Narula, J., Khaw, B. A., and Torchilin, V. P. (1993) Chemically optimized antimyosin Fab conjugate with chelating polymers: importance of the nature of the protein-polymer single site covalent bond for biodistribution and infarction localization. Bioconj. Chem. 4, 251–255.CrossRefGoogle Scholar
  19. 19.
    Torchilin, V. P. and Klibanov, A. L. (1991) The antibody-linked chelating polymers for nuclear therapy and diagnostics. CRC Crit. Rev. Ther. Drug Carrier Syst. 7, 275–308.Google Scholar
  20. 20.
    Torchilin, V. P., Klibanov, A. L., Nossiff, N. D., Slinkin, M. A., Strauss, H. W., Haber, E., Smirnov, V. N., and Khaw, B. A. (1987) Monoclonal antibody modification with chelate-linked high-molecular-weight polymers: major increase in polyvalent cation binding without loss of antigen binding. Hybridoma 6, 229–240.CrossRefPubMedGoogle Scholar
  21. 21.
    Khaw, B. A., Klibanov, A. L., O’Donnell, S. M., Saito, T., Nossiff, N., Slinkin, M. A., Newell, J. B., Strauss, H. W., and Torchilin, V. P. (1991) Gamma imaging with negatively charge-modified monoclonal antibody: modification with synthetic polymers. J. Nucl. Med. 32, 1742–1751.PubMedGoogle Scholar
  22. 22.
    Trubetskoy, V. S., Narula, J., Khaw, B. A., and Torchilin, V. P. (1993) Chemically optimized antimyosin Fab conjugates with chelating polymers: Importance of the nature of the protein-polymer single site covalent bond for biodistribution and infarct localization. Bioconj. Chem. 4, 251–255.CrossRefGoogle Scholar
  23. 23.
    Caride, V. J. and Zaret, B. L. (1977) Liposome accumulation in regions of experimental myocardial infarction. Science 198, 735–738.CrossRefPubMedGoogle Scholar
  24. 24.
    Kayawake, S. and Kako, K. J. (1982) Association of liposomes with the isolated perfused rabbit heart. Basic Res. Cardiol. 77, 668–681.CrossRefPubMedGoogle Scholar
  25. 25.
    Mueller, T. M., Marcus, M. L., Mayer, H. E., Williams, J. K., and Hermsmeyer, K. (1981) Liposome concentration in canine ischemic myocardium and depolarized myocardial cells. Circ. Res. 49, 405–415.PubMedGoogle Scholar
  26. 26.
    Cole, A. W., Kingaby, R. O., Lab, M. J., and Palmer, T. N. (1982) Myocardial liposome uptake in the early stages of myocardial infarction. Cardiovasc. Res. 16, 516–523.CrossRefPubMedGoogle Scholar
  27. 27.
    Caride, V. J., Twickler, J., and Zaret, B. L. (1984) Liposome kinetics in infarcted canine myocardium. J. Cardiovasc. Pharmacol. 6, 996–1005.PubMedGoogle Scholar
  28. 28.
    Palmer, T. N., Caride, V. J., Fernandez, L. A., and Twickler, J. (1981) Liposome accumulation in ischaemic intestine following experimental mesenteric occlusion. Biosci. Rep. 1, 337–344.CrossRefPubMedGoogle Scholar
  29. 29.
    Palmer, T. N., Caride, V. J., Caldecourt, M. A., Twicjler, J., and Abdullah, V. (1984) The mechanism of liposome accumulation in infarction. Biochim. Biophys. Acta 797, 363–368.PubMedGoogle Scholar
  30. 30.
    Palmer, T. N., Caldercourt, M. A., and Kingaby, R. O. (1984) Liposome drug delivery in chronic ischemia. Biochem. Soc. Trans. 12, 344–345.PubMedGoogle Scholar
  31. 31.
    Baldeschweiler, J. D. (1990) Liposomal targeting of ischemic tissue. Intl. Patent 9012595.Google Scholar
  32. 32.
    Nguen, P. D., Orear, E. A., Johnson, A. E., Patterson, E., Whitsett, T. L., and Bhakta, R. (1990) Accelerated thrombolysis and reperfusion in a canine model of myocardial infarction by liposomal incapsulation of streptokinase. Circ. Res. 66, 875–878.Google Scholar
  33. 33.
    Tang, C. S., Su, J. Y., Li, Z. P., Zhang, L. Z., Yang, J., Qi, M., Liu, F. A., and Tang, J. (1993) Possibility of targeting treatment for ischemic heart disease with liposome (I). Sci. China. B. 36, 590–598.PubMedGoogle Scholar
  34. 34.
    Tang, C. S., Su, J. Y., Li, Z. P., Zhang, L. Z., Yang, J., Qi, M., Liu, F. A., and Tang, J. (1993) Possibility of targeting treatment for ischemic heart disease with liposome (II). Sci. China. B. 36, 809–816.PubMedGoogle Scholar
  35. 35.
    Jadot, G. and Michelson, A. M. (1987) Comparative anti-inflammatory activity of different superoxide dismutases and liposomal SOD in ischemia. Free Radical Res. Commun. 3, 389–394.CrossRefGoogle Scholar
  36. 36.
    Suzuki, S., Miyachi, Y., Niwa, Y., and Isshiki, N. (1989) Significance of reactive oxygen species in distal flap necrosis and its salvage with liposomal SOD. Br. J. Plastic Surg. 42, 559–564.CrossRefGoogle Scholar
  37. 37.
    Phelan, A. M. and Lange, D. G. (1991) Ischemia-reperfusion-induced changes in membrane fluidity characteristics of brain capillary endothelial cells and its prevention by liposomal-incorporated superoxide dismutase. Biochim. Biophys. Acta 1067, 97–102.CrossRefPubMedGoogle Scholar
  38. 38.
    Bkaily, G., Sperelakis, N., Elishalom, Y., and Barenholz, Y. (1983) Effect of Na+-or Ca2+-filled liposomes on electrical activity of cultured heart cells. Am. J. Physiol. 245 (Heart Circ. Physiol. 14), H756–H761.PubMedGoogle Scholar
  39. 39.
    Laham, A., Claperon, N., Durussel, J. J., Fattal, E., Delattre, J., Puisieux, F., Couvreur, P., and Rossignol, P. (1988) Liposomally entrapped adenosine triphos-phate inproved efficiency against experimental brain ischaemia in the rat. J. Chromatogr. 440, 455–458.CrossRefPubMedGoogle Scholar
  40. 40.
    Torchilin, V. P., Khaw, B. A., Smirnov, V. N., and Haber, E. (1979) Preservation of antimyosin antibody activity after covalent coupling to liposomes. Biochem. Biophys. Res. Commun. 89, 1114–1119.CrossRefPubMedGoogle Scholar
  41. 41.
    Klibanov, A. L., Maruyama, K., Torchilin, V. P., and Huang, L. (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBSLett. 268, 235–237.CrossRefGoogle Scholar
  42. 42.
    Mori, A., Klibanov, A. L., Torchilin, V. P., and Huang, L. (1991) Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immuno-liposomes in vivo. FEBS Lett. 284, 263–266.CrossRefPubMedGoogle Scholar
  43. 43.
    Torchilin, V. P., Klibanov, A. L., Huang, L., O’Donnell, S., Nossiff, N. D., and Khaw, B. A. (1992) Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J. 6, 2716–2719.PubMedGoogle Scholar
  44. 44.
    Weissig, V., Lasch, J., Klibanov, A. L., and Torchilin, V. P. (1986) A new hydro-phobic anchor for the attachment of proteins to liposomal membranes. FEBS Lett. 202, 86–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Torchilin, V. P., Narula, J., Halpern, E., and Khaw, B. A. (1996) Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium. Biochim. Biophys. Acta 1279, 75–83.CrossRefPubMedGoogle Scholar
  46. 46.
    Torchilin, V. P., Narula, J., and Khaw, B. A. (1994) Delivery of pharmaceuticals by long-circulating immunoliposomes: factors influencing longevity and target accumulation. Proceedings of the 21st International Symposium on Controlled Release of Bioactive Materials, Nice, France. Controlled Release Society, pp. 222–223.Google Scholar
  47. 47.
    Gabizon, A. A. (1995) Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv. Drug Deliv. Rev. 16, 285–294.CrossRefGoogle Scholar
  48. 48.
    Gabizon, A. A. (1992) Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes. Cancer Res. 52, 891–896.PubMedGoogle Scholar
  49. 49.
    Reimer, K. A., Jennings, R. B., and Tatum, A. H. (1983) Pathobiology of acute myocardial ischemia: Metabolic, functional and ultrastructural studies. Am. J. Cardiol. 52, 72A–82A.CrossRefPubMedGoogle Scholar
  50. 50.
    Braunwald, E. and Kloner, R. A. (1985) Myocardial reperfusion: a double edged sword? J. Clin. Invest. 76, 1713–1719.CrossRefPubMedGoogle Scholar
  51. 51.
    Khaw, B. A., Torchilin, V. P., Vural, I., and Narula, J. (1995) Plug and seal: prevention of hypoxic cardiocyte death by sealing membrane lesions with antimyosin-liposomes. Nature Med. 1, 1195–1198.Google Scholar
  52. 52.
    Khaw, B. A., Vural, I., Narula, J., Haider, N., and Torchilin, V. P. (1996) Preservation of cardiocyte viability by immunoliposome-cell membrane sealing at 1, 2, 3, 4 and 5 days of hypoxia. Proceedings of the 23d International Symposium on Controlled Release of Bioactive Materials, Kyoto, Japan. Controlled Release Society, pp. 617,618.Google Scholar
  53. 53.
    Khaw, B. A., Vural, I., Narula, J., and Torchilin, V. P. (1995) Targeted sealing of cell membrane lesions: model of preservations of cell viability by immuno-liposome therapy. Proceedings of the 22nd International Symposium on Controlled Release of Bioactive Materials, Seattle, WA. Controlled Release Society, pp. 184–185.Google Scholar
  54. 54.
    Torchilin, V. P., Ivanov, N. N., Klibanov, A. L., Papisov, M. I., and Chebanov, S. M. (1988) On the mechanism of electron-dense liposome internalization by mac-rophages in vitro, in Liposomes as Drug Carriers (Gregoriadis, G., ed.), Wiley, Avon, UK, pp. 63–74.Google Scholar
  55. 55.
    Vural, I., Narula, J., Torchilin, V. P., and Khaw, B. A. (1995) A method for targeted intracellular delivery of drugs and genes: a novel utilization of immuno-liposomes. Proceedings of the 22nd International Symposium on Controlled Release of Bioactive Materials, Seattle, WA. Controlled Release Society, pp. 450,451.Google Scholar
  56. 56.
    Khaw, B. A., Vural, I., Torchilin, V. P., Haider, N., and Narula, J. (1996) Expression of antimyosin sFv gene in cardiocytes: use of cytoskeleton-specific immunoliposomes for transfection. Proceedings of the 23d International Symposium on Controlled Release of Bioactive Materials, Kyoto, Japan. Controlled Release Society, pp. 135,136.Google Scholar
  57. 57.
    Sambrook, D., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  58. 58.
    Krejcarek, G. E. and Tucker, K. L. (1977) Covalent attachment of chelating groups to macromolecules. Biochem. Biophys. Res. Commun. 77, 581–585.CrossRefPubMedGoogle Scholar
  59. 59.
    Habeeb, A. F. S. A. (1966) Determination of free amino groups in proteins by trinitrobenzene sulfonic acid. Anal. Biochem. 14, 328–336.CrossRefPubMedGoogle Scholar
  60. 60.
    Greenwood, F. C. and Hunter, W. M. (1963) The preparation of 131I-labeled human growth hormone of high specific radioactivity. Biochem. J. 89, 114–123.PubMedGoogle Scholar
  61. 61.
    Salacinski, P. R. P., McLean, C., Sykes, J. E. C., Clement-Jones, V. V., and Lowry, P. J. (1981) Iodination of proteins, glycoproteins, and peptides using a solid phase oxidizing agent, 1,3,4,6-tetrachloro-3a,6a-diphnyl glycoluril (Iodogen). Anal. Biochem. 117, 136–146.CrossRefPubMedGoogle Scholar
  62. 62.
    Khaw, B. A., Strauss, H. W., Cahill, S. L., Soule, H. R. Edgington, T., and Cooney, J. (1984) Sequential imaging of indium-111-labeled monoclonal antibody in human mammary tumors hosted in nude mice. J. Nucl. Med. 25, 592–603.PubMedGoogle Scholar
  63. 63.
    Tandan, R., Robinson, S. H., Munzer, J. S., and Bradley, W. G. (1987) Deficient DNA repair in amyotropic lateral sclerosis. J. Neurol. 79, 189–203.Google Scholar
  64. 64.
    Khaw, B. A., Strauss, H. W., Moore, R., Fallon, J. T., Yasuda, T., Gold, H. K., and Haber, E. (1987) Myocardial damage delineated with In-111 antimyosin FAb and Tc-99m pyrophosphate. J. Nucl. Med. 28, 76–82.PubMedGoogle Scholar
  65. 65.
    Lie, J. T., Pairolero, P. C., Holley, K. E., and Titus, J. (1975) Macroscopic enzyme-mapping verification of large, homogenous, experimental myocardia infarcts of predictable size and location in dogs. J. Thorac. Cardiovasc. Surg. 69, 599–605.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  1. 1.Center for Imaging and Pharmaceutical ResearchMassachusetts General Hospital and Harvard Medical SchoolCharlestown

Personalised recommendations