Drug Targeting pp 133-157 | Cite as

Inhibition of Tumor Blood Flow

Part of the Methods in Molecular Medicine™ book series (MIMM, volume 25)


Research into the treatment of cancer has often been driven by the idea that a common biochemical pathway might exist in all tumors, providing an ideal target for therapy. However, it is now clear that a great variety of genetic changes contributes to the development of individual cancers, and that no two cancers are identical. Nevertheless, a common feature in solid tumors is the disorganized way in which the blood vessels develop. Networks of tumor capillaries, linked to the blood supply by arterioles and venules, are necessary for tumors to grow but, in contrast to capillaries supplying normal tissue, are haphazard in both their structure and their dynamics. It may be possible to use this common feature as a basis for selective therapy. In this chapter we provide a short review of the vasculature of solid tumors, then describe methods by which drugs might be used to inhibit tumor blood flow. Finally, we review some of the methods available for measurement of tumor blood flow.


Arterial Input Function Vinca Alkaloid Murine Tumor Tumor Blood Flow Absolute Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Skinner, S. A., Tutton, P. J., and O’Brien, P. E. (1990) Microvascular architecture of experimental colon tumors in the rat. Cancer Res. 50, 2411–2417.PubMedGoogle Scholar
  2. 2.
    Folkman, J. (1986) How is blood vessel growth regulated in normal and neoplastic tissue?-GHA Clowes memorial award lecture. Cancer Res. 46, 467–473.PubMedGoogle Scholar
  3. 3.
    Siemann, D. W., Bronskill, M. J., Hill, R. P., and Bush, R. S. (1975) The relationship between mouse arterial partial pressure of oxygen (PaO2) and the effectiveness of localized tumour irradiation. Br. J. Radiol. 48, 662–667.PubMedCrossRefGoogle Scholar
  4. 4.
    Shimizu, S., Eguchi, Y., Kamiike, W., Itoh, Y., Hasegawa, J., Yamabe, K., Otsuki, Y., Matsuda, H., and Tsujimoto, Y. (1996) Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL. Cancer Res. 56, 2161–2166.PubMedGoogle Scholar
  5. 5.
    Alarcon, R. M., Rupnow, B. A., Graeber, T. G., Knox, S. J., and Giaccia, A. J. (1996) Modulation of c-Myc activity and apoptosis in vivo. Cancer Res. 56, 4315–4319.PubMedGoogle Scholar
  6. 6.
    Teicher, B. A. (1994) Hypoxia and drug resistance. Cancer Metastasis Rev. 13, 139–168.PubMedCrossRefGoogle Scholar
  7. 7.
    Reynolds, T. Y., Rockwell, S., and Glazer, P. M. (1996) Genetic instability induced by the tumor microenvironment. Cancer Res. 56, 5754–5757.PubMedGoogle Scholar
  8. 8.
    Boucher, Y. and Jain, R. K. (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52, 5110–5114.PubMedGoogle Scholar
  9. 9.
    Lefer, A. M. and Lefer, D. J. (1993) Pharmacology of the endothelium in ische-mia-reperfusion and circulatory shock. Annu. Rev. Pharmacol. Toxicol. 33, 71–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Parkins, C. S., Dennis, M. F., Stratford, M. R., Hill, S. A., and Chaplin, D. J. (1995) Ischemia reperfusion injury in tumors: the role of oxygen radicals and nitric oxide. Cancer Res. 55, 6026–6029.PubMedGoogle Scholar
  11. 11.
    Wilson, W. R. (1992) Tumour hypoxia: challenges for cancer chemotherapy, in Cancer Biology and Medicine, 3, The Search for New Anticancer Drugs (Waring, M. J. and Ponder, B. A. J., eds.), Kluwer Academic Publishers, Lancaster, PA, pp. 87–131.Google Scholar
  12. 12.
    Brown, J. M. (1993) SR-4233 (tirapazamine)-anew anticancer drug exploiting hypoxia in solid tumours. Br. J. Cancer 67, 1163–1170.PubMedCrossRefGoogle Scholar
  13. 13.
    Naredi, P. L. J., Lindner, P. G., Holmberg, S. B., Stenram, U., Peterson, A., and Hafstrom, L. R. (1993) The effects of tumour necrosis factor-alpha on the vascular bed and blood flow in an experimental rat hepatoma. Intl. J. Cancer 54, 645–649.CrossRefGoogle Scholar
  14. 14.
    Pedley, R. B., Begent, R. H., Boden, J. A., Boxer, G. M., Boden, R., and Keep, P. A. (1994) Enhancement of radioimmunotherapy by drugs modifying tumour blood flow in a colonic xenograft model. Intl. J. Cancer 57, 830–835.CrossRefGoogle Scholar
  15. 15.
    Pruijn, F. B., van Daalen, M., Holford, N. H. G., and Wilson, W. R. (1997) Mechanisms of enhancement of the antitumour activity of melphalan by the tumour blood flow inhibitor 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother. Pharmacol. 39, 541–546.PubMedCrossRefGoogle Scholar
  16. 16.
    Coleman, C. N. (1988) Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity.J. Natl. Cancer. Inst. 80, 310–317.PubMedCrossRefGoogle Scholar
  17. 17.
    Vaupel, P., Kallinowski, F., and Okunieff, P. (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465.PubMedGoogle Scholar
  18. 18.
    Andrade, S. P., Hart, I. R., and Piper, P. J. (1992) Inhibitors of nitric oxide synthase selectively reduce flow in tumour-associated neovasculature. Br. J. Pharmacol. 107, 1092–1095.PubMedGoogle Scholar
  19. 19.
    Stone, H. B., Minchinton, A. I., Lemmon, M., Menke, D., and Brown, J. M. (1992) Pharmacological modification of tumor blood flow: lack of correlation between alteration of mean arterial blood pressure and changes in tumor perfusion. Intl. J. Radiat. Oncol. Biol. Phys. 22, 79–86.CrossRefGoogle Scholar
  20. 20.
    Mattsson, J., Lilja, J., and Peterson, H. I. (1982) Influence of vasoactive drugs on local tumor blood flow. Eur. J. Cancer Clin. Oncol. 18, 677–684.PubMedCrossRefGoogle Scholar
  21. 21.
    Hori, K., Zhang, Q. H., Saito, S., Tanda, S., Li, H. C., and Suzuki, M. (1993) Microvascular mechanisms of change in tumor blood flow due to angiotensin-II, epinephrine, and methoxamine: a functional morphometric study. Cancer Res. 53, 5528–5534.PubMedGoogle Scholar
  22. 22.
    Lee, I., Boucher, Y., Demhartner, T. J., and Jain, R. K. (1994) Changes in tumour blood flow, oxygenation and interstitial fluid pressure induced by pentoxifylline. Br. J. Cancer 69, 492–496.PubMedCrossRefGoogle Scholar
  23. 23.
    Cater, D. B., Petrie, A., and Watkinson, D. A. (1965) Effect of 5-hydrox-ytryptamine and cyproheptadine on tumour blood flow. Acta Radiolog. Ther. Phys. Biol. 3, 109–128.Google Scholar
  24. 24.
    Stücker, O., Vicaut, E., and Teisseire, B. (1992) Specific response to 5-HT2 agonists by arterioles linked to Meth A tumors in mice. Am. J. Physiol. 262 (Pt 2), H704–H709.PubMedGoogle Scholar
  25. 25.
    Baguley, B. C., Cole, G., Thomsen, L. L., and Zhuang, L. (1993) Serotonin involvement in the antitumour and host effects of flavone-8-acetic acid and 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother. Pharmacol. 33, 77–81.PubMedCrossRefGoogle Scholar
  26. 26.
    Manda, T., Nishigaki, F., Mori, J., and Shimomura, K. (1988) Important role of serotonin in the antitumor effects of tumor necrosis factor-alpha in mice. Cancer Res. 48, 4250–4255.PubMedGoogle Scholar
  27. 27.
    Pedley, R. B., Boden, J. A., Boden, R., Boxer, G. M., Flynn, A. A., Keep, P. A., and Begent, R. H. J. (1996) Ablation of colorectal xenografts with combined radio immunotherapy and tumor blood flow-modifying agents. Cancer Res. 56, 3293–3300.PubMedGoogle Scholar
  28. 28.
    Lash, C. J., Li, A. E., Ruthland, M., Baguley, B. C., Zwi, L. J., and Wilson, W. R. (1998) Enhancement of the antitumour effects of the antivascular agent 5,6-dimethylxanethenone-4-acetic acid (DMXAA) by combination with 5-hydrox-ytryptamine and bioreductive drugs. Br. J. Cancer 78, 439–445.PubMedCrossRefGoogle Scholar
  29. 29.
    Vanhoutte, P. M. (1991) Serotonin, hypertension and vascular disease. Netherlands J. Med. 38, 35–42.Google Scholar
  30. 30.
    Peters, C. E. and Chaplin, D. J. (1992) Blood flow modification in the SCCVII tumor: effects of 5-hydroxytryptamine, hydralazine and propranolol. Intl. J. Radiat. Oncol. Biol. Phys. 22, 463–465.CrossRefGoogle Scholar
  31. 31.
    Horsman, M. R., Christensen, K. L., and Overgaard, J. (1992) Relationship between the hydralazine-induced changes in murine tumor blood supply and mouse blood pressure. Intl. J. Radiat. Oncol. Biol. Phys. 22, 455–458.CrossRefGoogle Scholar
  32. 32.
    Honess, D. J. and Bleehen, N. M. (1992) Comparative effects of hydralazine on perfusion of KHT tumor, kidney and liver and on renal function in mice. Intl. J. Radiat. Oncol. Biol. Phys. 22, 953–961.CrossRefGoogle Scholar
  33. 33.
    Jones, G. R., Ellis, R., and Frohn, M. J. (1981) Drug-induced interference with energy metabolism in the S180 sarcoma: a new principle in the production of selective tumor injury. Oncodev. Biol. Med. 2, 155–164.PubMedGoogle Scholar
  34. 34.
    Chaplin, D. J. and Acker, B. (1987) The effect of hydralazine on the tumor cytotoxicity of the hypoxic cell cytotoxin RSU-1069. Evidence for therapeutic gain. Int. J. Radiat. Oncol. Biol. Phys. 13, 579–585.PubMedCrossRefGoogle Scholar
  35. 35.
    Chaplin, D. J. (1986) Potentiation of RSU-1069 tumour cytotoxicity by 5-hydroxytryptamine (5-HT). Br. J. Cancer 54, 727–731.PubMedCrossRefGoogle Scholar
  36. 36.
    Kalmus, J., Okunieff, P., and Vaupel, P. (1990) Dose-dependent effects of hydralazine on microcirculatory function and hyperthermic response of murine FSall tumors. Cancer Res. 50, 15–19.PubMedGoogle Scholar
  37. 37.
    Belfi, C. A., Paul, C. R., Shan, S., and Ngo, F. Q. (1994) Comparison of the effects of hydralazine on tumor and normal tissue blood perfusion by MRI. Intl. J. Radiat. Oncol. Biol. Phys. 29, 473–479.CrossRefGoogle Scholar
  38. 38.
    Vaupel, P. (1975) Interrelationship between mean arterial blood pressure, blood flow, and vascular resistance in solid tumor tissue of DS-carcinosarcoma. Experientia 31, 587–589.PubMedCrossRefGoogle Scholar
  39. 39.
    Trotter, M. J., Acker, B. D., and Chaplin, D. J. (1989) Histological evidence for nonperfused vasculature in a murine tumor following hydralazine administration. Intl. J. Radiat. Oncol. Biol. Phys. 17, 785–789.CrossRefGoogle Scholar
  40. 40.
    Chaplin, D. J., Acker, B., and Olive, P. L. (1989) Potentiation of the tumor cytotoxicity of melphalan by vasodilating drugs. Intl. J. Radiat. Oncol. Biol. Phys. 16, 1131–1135.CrossRefGoogle Scholar
  41. 41.
    Atassi, G., Briet, P., Berthelon, J.-J., and Collonges, F. (1985) Synthesis and antitumor activity of some 8-substituted 4-oxo-4H-1-benzopyrans. Eur. J. Med. Chem. 5, 393–402.Google Scholar
  42. 42.
    Plowman, J., Narayanan, V. L., Dykes, D., Szarvasi, E., Briet, P., Yoder, O. C., and Paull, K. D. (1986) Flavone acetic acid: a novel agent with preclinical antitumor activity against colon adenocarcinoma 38 in mice. Cancer. Treat. Rep. 70, 631–638.PubMedGoogle Scholar
  43. 43.
    Finlay, G. J., Smith, G. P., Fray, L. M., and Baguley, B. C. (1988) Effect of flavone acetic acid (NSC 347512) on Lewis lung carcinoma: evidence for an indirect effect. J. Natl. Cancer Inst. 80, 241–245.PubMedCrossRefGoogle Scholar
  44. 44.
    Evelhoch, J. L., Bissery, M.-C., Chabot, G. G., Simpson, N. E., McCoy, C. L., Heilbrun, L. K., and Corbett, T. H. (1988) Flavone acetic acid (NSC 347512)-induced modulation of murine tumor physiology monitored by in vivo nuclear magnetic resonance spectroscopy. Cancer Res. 48, 4749–4755.PubMedGoogle Scholar
  45. 45.
    Zwi, L. J., Baguley, B. C., Gavin, J. B., and Wilson, W. R. (1989) Blood flow failure as a major determinant in the antitumor action of flavone acetic acid (NSC 347512). J. Natl. Cancer Inst. 81, 1005–1013.PubMedCrossRefGoogle Scholar
  46. 46.
    Hill, S., Williams, K. B., and Denekamp, J. (1989) Vascular collapse after flavone acetic acid. A possible machanism of its antitumour action. Eur. J. Cancer Clin. Oncol. 25, 1419–1423.PubMedCrossRefGoogle Scholar
  47. 47.
    Bibby, M. C., Double, J. A., Loadman, P. M., and Duke, C. V. (1989) Reduction of tumor blood flow by flavone acetic acid: a possible component of therapy. J. Natl. Cancer Inst. 81, 216–220.PubMedCrossRefGoogle Scholar
  48. 48.
    Smith, G. P., Calveley, S. B., Smith, M. J., and Baguley, B. C. (1987) Flavone acetic acid (NSC 347512) induces haemorrhagic necrosis of mouse colon 26 and 38 tumours. Eur. J. Cancer Clin. Oncol. 23, 1209–1212.PubMedCrossRefGoogle Scholar
  49. 49.
    Baguley, B. C., Calveley, S. B., Crowe, K. K., Fray, L. M., O’Rourke, S. A., and Smith, G. P. (1989) Comparison of the effects of flavone acetic acid, fostriecin, homoharringtonine and tumour necrosis factor alpha on Colon 38 tumors in mice. Eur. J. Cancer Clin. Oncol. 25, 263–269.PubMedCrossRefGoogle Scholar
  50. 50.
    Zwi, L. J., Baguley, B. C., Gavin, J. B., and Wilson, W. R. (1994) The morphological effects of the anti-tumour agents flavone acetic acid and 5,6-dimethylxanthenone acetic acid on the colon 38 mouse tumour. Pathology 26, 161–169.PubMedCrossRefGoogle Scholar
  51. 51.
    Hill, S. A., Williams, K. B., and Denekamp, J. (1992) A comparison of vascular-mediated tumor cell death by the necrotizing agents GR63178 and flavone acetic acid. Intl. J. Radiat. Oncol. Biol. Phys. 22, 437–441.CrossRefGoogle Scholar
  52. 52.
    Honess, D. J. and Bleehen, N. M. (1991) Effects of two tumour blood flow modifiers, hydralazine and flavone acetic acid, on KHT tumours and normal tissues in mice. Intl. J. Radiat. Biol. 60, 249–253.PubMedCrossRefGoogle Scholar
  53. 53.
    Mace, K. F., Hornung, R. L., Wiltrout, R. H., and Young, H. A. (1990) Correlation between in vivo induction of cytokine gene expression by flavone acetic acid and strict dose dependency and therapeutic efficacy against murine renal cancer. Cancer Res. 50, 1742–1747.PubMedGoogle Scholar
  54. 54.
    Hornung, R. L., Back, T. C., Zaharto, D. S., Urba, W. J., Longo, D. L., and Wiltrout, R. H. (1988) Augmentation of natural killer (NK) activity, induction of interferon and development of tumor immunity during the successful treatment of established murine renal cancer using flavone acetic acid (FAA) and interleukin 2. J. Immunol. 141, 3671–3679.PubMedGoogle Scholar
  55. 55.
    Mahadevan, V., Malik, S. T. A., Meager, A., Fiers, W., Lewis, G. P., and Hart, I. R. (1990) Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown. Cancer Res. 50, 5537–5542.PubMedGoogle Scholar
  56. 56.
    North, R. J. and Havell, E. A. (1988) The antitumour function of tumour necrosis factor (TNF) II. Analysis of the role of endogenous TNF in endotoxin-induced hemorrhagic necrosis and regression of an established sarcoma. J. Exp. Med. 167, 1086–1099.PubMedCrossRefGoogle Scholar
  57. 57.
    Watanabe, N., Yoshiro, N., Umeno, H., Kuriyama, H., Neda, H., Yamauchi, N., Maeda, M., and Urushizaki I. (1988) Toxic effect of tumor necrosis factor on tumor vasculature. Cancer Res. 48, 2179–2183.PubMedGoogle Scholar
  58. 58.
    Murray, J. C., Smith, K. A., and Thurston, G. (1989) Flavone acetic acid induces a coagulopathy in mice. Br. J. Cancer 60, 729–733.PubMedCrossRefGoogle Scholar
  59. 59.
    Ferrero, E., Villa, A., Ferrero, M. E., Toninelli, E., Bender, J. R., Pardi, R., and Zocchi, M. R. (1996) Tumor necrosis factor alpha-induced vascular leakage involves PECAM1 phosphorylation. Cancer Res. 56, 3211–3215.PubMedGoogle Scholar
  60. 60.
    Sun, J. R. and Brown, J. M. (1989) Enhancement of the antitumor effect of flavone acetic acid by the bioreductive cytotoxic drug SR 4233 in a murine carcinoma. Cancer Res. 49, 5664–5670.PubMedGoogle Scholar
  61. 61.
    Cliffe, S., Taylor, M. L., Rutland, M., Baguley, B. C., Hill, R. P., and Wilson, W. R. (1994) Combining bioreductive drugs (SR 4233 or SN 23862) with the vaso-active agents flavone acetic acid or 5,6-dimethylxanthenone acetic acid. Intl. J. Radiat. Oncol. Biol. Phys. 29, 373–377.CrossRefGoogle Scholar
  62. 62.
    Sakaguchi, Y., Maehara, Y., Baba, H., Kusumoto, T., Sugimachi, K., and Newman, R. A. (1992) Flavone acetic acid increases the antitumor effect of hyperthermia in mice. Cancer Res. 52, 3306–3309.PubMedGoogle Scholar
  63. 63.
    Kerr, D. J. and Kaye, S. B. (1989) Flavone acetic acid-preclinical and clinical activity. Eur. J. Cancer Clin. Oncol. 25, 1271,1272.CrossRefGoogle Scholar
  64. 64.
    O’Reilly, S. M., Rustin, G. J. S., Farmer, K., Burke, M., Hill, S., and Denekamp, J. (1993) Flavone acetic acid (FAA) with recombinant interleukin-2 (rIL-2) in advanced malignant melanoma.1. Clinical and vascular studies. Br. J. Cancer 67, 1342–1345.PubMedCrossRefGoogle Scholar
  65. 65.
    Futami, H., Eader, L. A., Komschlies, K. L., Bull, R., Gruys, M. E., Ortaldo, J. R., Young, H. A., and Wiltrout, R. H. (1991) Flavone acetic acid directly induces expression of cytokine genes in mouse splenic leukocytes but not in human peripheral blood leukocytes. Cancer Res. 51, 6596–6602.PubMedGoogle Scholar
  66. 66.
    Rewcastle, G. W., Atwell, G. J., Baguley, B. C., Calveley, S. B., and Denny, W. A. (1989) Potential antitumor agents. 58. Synthesis and structure-activity relationships of substituted xanthenone-4-acetic acids active against the Colon 38 tumor in vivo. J. Med. Chem. 32, 793–799.PubMedCrossRefGoogle Scholar
  67. 67.
    Rewcastle, G. W., Atwell, G. J., Zhuang, L., Baguley, B. C., and Denny, W. A. (1991) Potential antitumor agents. 61. Structure-activity relationships for in vivo colon-38 activity among disubstituted 9-oxo-9H-xanthene-4-acetic acids. J.Med. Chem. 34, 217–222.PubMedCrossRefGoogle Scholar
  68. 68.
    Ching, L.-M., Joseph, W. R., Zhuang, L., Atwell, G. J., Rewcastle, G. R., Denny, W. A., and Baguley, B. C. (1991) Induction of natural killer activity by xanthenone analogues of flavone acetic acid: relation with antitumour activity. Eur. J. Cancer. 27, 79–83.PubMedCrossRefGoogle Scholar
  69. 69.
    Zwi, L. J., Baguley, B. C., Gavin, J. B., and Wilson, W. R. (1994) Correlation between immune and vascular activities of xanthenone acetic acid antitumor agents. Oncol. Res. 6, 79–85.PubMedGoogle Scholar
  70. 70.
    Philpott, M., Baguley, B. C., and Ching, L.-M. (1995) Induction of tumour necrosis factor-alpha by single and repeated doses of the antitumour agent 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother. Pharmacol. 36, 143–148.PubMedCrossRefGoogle Scholar
  71. 71.
    Thomsen, L. L., Ching, L. M., Zhuang, L., Gavin, J. B., and Baguley, B. C. (1991) Tumor-dependent increased plasma nitrate concentrations as an indication of the antitumor effect of flavone-8-acetic acid and analogues in mice. Cancer Res. 51, 77–81.PubMedGoogle Scholar
  72. 72.
    Baguley, B. C., Zhuang, L., and Kestell, P. (1997) Increased plasma serotonin following treatment with flavone-8-acetic acid, 5,6-dimethylxanthenone-4-acetic acid, vinblastine, and colchicine-relation to vascular effects. Oncol. Res. 9, 55–60.PubMedGoogle Scholar
  73. 73.
    Ching, L. M., Joseph, W. R., Crosier, K. E., and Baguley, B. C. (1994) Induction of tumor necrosis factor-alpha messenger RNA in human and murine cells by the flavone acetic acid analogue 5,6-dimethylxanthenone-4-acetic acid (NSC 640488). Cancer Res. 54, 870–872.PubMedGoogle Scholar
  74. 74.
    Philpott, M., Joseph, W. R., Crosier, K. E., Baguley, B. C., and Ching, L.-M. (1997) Production of tumour necrosis factor-alpha by cultured human peripheral blood leucocytes in response to the antitumour agent 5,6-dimethylxanthenone-4-acetic acid (NSC 640488). Br. J. Cancer, in press.Google Scholar
  75. 75.
    Jordan, M. A., Thrower, D., and Wilson, L. (1991) Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res. 51, 2212–2222.PubMedGoogle Scholar
  76. 76.
    Baguley, B. C., Holdaway, K. M., Thomsen, L. L., Zhuang, L., and Zwi, L. J. (1991) Inhibition of growth of colon-38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur. J. Cancer 27, 482–487.PubMedCrossRefGoogle Scholar
  77. 77.
    Bogdan, C. and Ding, A. (1992) Taxol, a micro tubule-stabilizing antineoplastic agent, induces expression of tumor necrosis factor alpha and interleukin-1 in macrophages. J. Leukocyte Biol. 52, 119–121.PubMedGoogle Scholar
  78. 78.
    Hill, S. A., Lonergan, S. J., Denekamp, J., and Chaplin, D. J. (1993) Vinca alkaloids—anti-vascular effects in a murine tumour. Eur. J. Cancer 29A, 1320–1324.PubMedCrossRefGoogle Scholar
  79. 79.
    Hill, S. A., Lonergan, S. J., Denekamp, J., and Chaplin, D. J. (1994) The effect of Vinca alkaloids on tumour blood flow. Adv. Exp. Med. Biol. 345, 417–422.PubMedGoogle Scholar
  80. 80.
    Hill, S. A., Sampson, L. E., and Chaplin, D. J. (1995) Anti-vascular approaches to solid tumour therapy: evaluation of vinblastine and flavone acetic acid. Intl. J. Cancer 63, 119–123.CrossRefGoogle Scholar
  81. 81.
    Dark, G. G., Hill, S. A., Prise, V. E., Tozer, G. M., Pettit, G. R., and Chaplin, D. J. (1997) Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 57, 1829–1834.PubMedGoogle Scholar
  82. 82.
    Watts, M. E., Woodcock, M., Arnold, S., and Chaplin, D. J. (1997) Effects of novel and conventional anti-cancer agents on human endothelial permeability: influence of tumour secreted factors. Anticancer Res. 17, 71–75.PubMedGoogle Scholar
  83. 83.
    Pallavicini, M. G. and Hill, R. P. (1983) Effect of tumor blood flow manipulations on radiation response. Intl. J. Radiat. Oncol. Biol. Phys. 9, 1321–1325.CrossRefGoogle Scholar
  84. 84.
    Cullen, B. M. and Walker, H. C. (1985) The effect of several anaesthetics on the blood pressure and heart rate of the mouse and on the radiation response of the mouse sarcoma RIF-1. Intl. J. Radiat. Biol. 48, 761–771.CrossRefGoogle Scholar
  85. 85.
    Zanelli, G. D. and Lucas, P. B. (1976) Effect of stress on blood perfusion and vascular space in transplanted mouse tumors. Br. J. Radiol. 49, 382,383.CrossRefGoogle Scholar
  86. 86.
    Joiner, B., Hirst, V. K., McKeown, S. R., McAleer, J. J. A., and Hirst, D. G. (1993) The effect of recombinant human erythropoietin on tumour radiosensitivity and cancer-associated anaemia in the mouse. Br. J. Cancer 68, 720–726.PubMedCrossRefGoogle Scholar
  87. 87.
    Penhaligon, M. (1984) Radioprotection of mouse skin vasculature and the RIF-1 fibrosarcoma by WR-2721. Intl. J. Radiat. Oncol. Biol. Phys. 10, 1541–1544.CrossRefGoogle Scholar
  88. 88.
    Shibamoto, Y., Sasai, K., and Abe, M. (1987) The radiation response of SCCVII tumor cells in C3H/He mice varies with the irradiation conditions. Radiat. Res. 109, 352–354.PubMedCrossRefGoogle Scholar
  89. 89.
    Trotter, M. J., Chaplin, D. J., and Olive, P. L. (1991) Effect of angiotensin II on intermittent tumour blood flow and acute hypoxia in the murine SCCVII carcinoma. Eur. J. Cancer Clin. Oncol. 27, 887–893.CrossRefGoogle Scholar
  90. 90.
    Field, S. B., Needham, S., Burney, I. A., Maxwell, R. J., Coggle, J. E., and Griffiths, J. R. (1991) Differences in vascular response between primary and transplanted tumours. Br. J. Cancer 63, 723–726.PubMedCrossRefGoogle Scholar
  91. 91.
    Ward-Hartley, K. A. and Jain, R. K. (1987) Effect of glucose and galactose on microcirculatory flow in normal and neoplastic tissues in rabbits. Cancer Res. 47, 371–377.PubMedGoogle Scholar
  92. 92.
    Kimura, H., Braun, R. D., Ong, E. T., Hsu, R., Secomb, T. W., Papahadjopoulos, D., Hong, K., and Dewhirst, M. W. (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res. 56, 5522–5528.PubMedGoogle Scholar
  93. 93.
    Suzuki, T., Yanagi, K., Ookawa, K., Hatakeyama, K., and Ohshima, N. (1996) Flow visualisation of microcirculation in solid tumor tissues: intravital microscopic observation of blood circulation by use of a confocal laser scanning microscope. Front. Med. Biol. Engineer 7, 253–263.Google Scholar
  94. 94.
    Vaupel, P. W. and Okunieff, P. G. (1988) Role of hypovolemic hemoconcentration in dose-dependent flow decline observed in murine tumors after intraperitoneal administration of glucose or mannitol. Cancer Res. 48, 7102–7106.PubMedGoogle Scholar
  95. 95.
    Guichard, M., Lespinasse, F., Trotter, M., Durand, R., and Chaplin, D. (1991) The effect of hydralazine on blood flow and misonidazole toxicity in human tumour xenografts. Radiother. Oncol. 20, 117–123.PubMedCrossRefGoogle Scholar
  96. 96.
    Chaplin, D. J. and Hill, S. A. (1995) Temporal heterogeneity in microregional erythrocyte flux in experimental solid tumours. Br. J. Cancer 71, 1210–1213.PubMedCrossRefGoogle Scholar
  97. 97.
    Pigott, K. H., Hill, S. A., Chaplin, D. J., and Saunders, M. I. (1996) Microregional fluctuations in perfusion within human tumours detected using laser Doppler flowmetry. Radiother. Oncol. 40, 45–50.PubMedCrossRefGoogle Scholar
  98. 98.
    Sapirstein, L. A. (1958) Regional blood flow by fractional distribution of indicators. Am. J. Physiol. 193, 161–168.PubMedGoogle Scholar
  99. 99.
    Zanelli, G. D. and Fowler, J. F. (1974) The measurement of blood perfusion in experimental tumors by uptake of 86Rb1. Cancer Res. 34, 1451–1456.PubMedGoogle Scholar
  100. 100.
    Kaelin, W. G., Jr., Shrivastav, S., and Jirtle, R. L. (1984) Blood flow to primary tumors and lymph node metastases in SMT-2A tumor-bearing rats following intravenous flunarizine. Cancer Res. 44, 896–899.PubMedGoogle Scholar
  101. 101.
    DiPette, D. J., Ward-Hartley, K. A., and Jain, R. K. (1986) Effect of glucose on systemic hemodynamics and blood flow rate in normal and tumor tissues in rats. Cancer Res. 46, 6299–6304.PubMedGoogle Scholar
  102. 102.
    Olive, P. L., Chaplin, D. J., and Durand, R. E. (1985) Pharmacokinetics, binding and distribution of Hoechst 33342 in spheroids and murine tumours. Br. J. Cancer 52, 739–746.PubMedCrossRefGoogle Scholar
  103. 103.
    Trotter, M. J., Chaplin, D. J., and Olive, P. L. (1989) Use of a carbocyanine dye as a marker of function vasculature in murine tumours. Br. J. Cancer 59, 706–709.PubMedCrossRefGoogle Scholar
  104. 104.
    Smith, K. A., Hill, S. A., Begg, A. C., and Denekamp, J. (1988) Validation of the fluorescent dye Hoechst 33342 as a vascular space marker in tumours. Br. J. Cancer 57, 247–253.PubMedCrossRefGoogle Scholar
  105. 105.
    Lassen, N. A., Lindberg, J., and Munck, O. (1964) Measurement of blood flow through skeletal muscle by intramuscular injection of xenon-133. Lancet, 1, 686–689.PubMedCrossRefGoogle Scholar
  106. 106.
    Brown, S. L., Hunt, J. W., and Hill, R. P. (1988) A comparison of the rate of clearance of xenon (133Xe) and pertechnetate ion (99mTcO-4) in murine tumors and normal leg muscles. Nuclear Med. Biol. 15, 381–390.Google Scholar
  107. 107.
    Cerretelli, P., Marconi, C., Pendergast, D., Meyer, M., Heisler, N., and Piiper, J. (1984) Blood flow in exercising muscles by xenon clearance and by microsphere trapping. J.Appl. Physiol. 56, 24–30.PubMedGoogle Scholar
  108. 108.
    Kallman, R. F., Denardo, G., and Stasch, M. (1972) Blood flow in irradiated mouse sarcoma as determined by the clearance of xenon-133. Cancer Res. 32, 483–490.PubMedGoogle Scholar
  109. 109.
    Evelhoch, J. L., Sapareto, S. A., Nussbaum, G. H., and Ackman, J. J. H. (1986) Correlation between 31P NMR spectroscopy and 15O perfusion measurements in the RIF-1 murine tumor in vivo. Radiat. Res. 106, 122–131.PubMedCrossRefGoogle Scholar
  110. 110.
    Rofstad, E. K., DeMuth, P., Fenton, B. M., Ceckler, T. L., and Sutherland, R. M. (1989) 31P NMR spectroscopy and HbO2 cryospectrophotometry in prediction of tumor radioresistance caused by hypoxia. Intl. J. Radiat. Oncol. Biol. Phys. 16, 919–923.CrossRefGoogle Scholar
  111. 111.
    Okunieff, P., Kallinowski, F., Vaupel, P., and Neuringer, L. J. (1988) Effects of hydralazine-induced vasodilation on the energy metabolism of murine tumors studied by in vivo 31P-nuclear magnetic resonance spectroscopy. J.Natl. Can-cer. Inst. 80, 745–750.CrossRefGoogle Scholar
  112. 112.
    Burney, I. A., Maxwell, R. J., Griffiths, J. R., and Field, S. B. (1991) The potential for prazosin and calcitonin gene-related peptide (CGRP) in causing hypoxia in tumours. Br. J. Cancer 64, 683–688.PubMedCrossRefGoogle Scholar
  113. 113.
    Bhujwalla, Z. M., Shungu, D. C., and Glickson, J. D. (1996) Effects of blood flow modifiers on tumor metabolism observed in vivo by proton magnetic resonance spectroscopic imaging. Magnetic Resonance Med. 36, 204–211.CrossRefGoogle Scholar
  114. 114.
    Stone, H. B., Brown, J. M., Phillips, T. L., and Sutherland, R. M. (1993) Oxygen in human tumors: Correlations between methods of measurement and response to therapy. Radiat. Res. 136, 422–434.PubMedCrossRefGoogle Scholar
  115. 115.
    Raleigh, J. A., Dewhirst, M. W., and Thrall, D. E. (1996) Measuring tumor hypoxia. Seminars Rad. Oncol. 6, 37–45.CrossRefGoogle Scholar
  116. 116.
    Vaupel, P. W. and Hockel, M. (1995) Oxygenation status of human tumors: a reappraisal using computerized pO2 histography, in Tumor Oxygenation (Vaupel, P. W., Kelleher, D. K., and Gunderoth, M., eds.), Fischer-Verlag, Stuttgart, Germany, pp. 219–232.Google Scholar
  117. 117.
    Chapman, J. D., Coia, L. R., Stobbe, C. C., Engelhardt, E. L., Fenning, M. C., and Schneider, R. F. (1996) Prediction of tumour hypoxia and radioresistance with nuclear medicine markers. Br. J. Cancer 74XXVII, S204–S208.Google Scholar
  118. 118.
    Zwi, L. J. (1992) The mechanism of the anti-tumour action of flavone acetic acid and its xanthenone acetic acid analogs. Thesis, The University of Auckland, New Zealand.Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  1. 1.Cancer Research LaboratoryUniversity of Auckland School of MedicineAucklandNew Zealand
  2. 2.Section of Oncology, Department of PathologyUniversity of Auckland School of MedicineAucklandNew Zealand

Personalised recommendations