Skip to main content

Inhibition of Tumor Blood Flow

  • Protocol
Drug Targeting

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 25))

  • 675 Accesses

Abstract

Research into the treatment of cancer has often been driven by the idea that a common biochemical pathway might exist in all tumors, providing an ideal target for therapy. However, it is now clear that a great variety of genetic changes contributes to the development of individual cancers, and that no two cancers are identical. Nevertheless, a common feature in solid tumors is the disorganized way in which the blood vessels develop. Networks of tumor capillaries, linked to the blood supply by arterioles and venules, are necessary for tumors to grow but, in contrast to capillaries supplying normal tissue, are haphazard in both their structure and their dynamics. It may be possible to use this common feature as a basis for selective therapy. In this chapter we provide a short review of the vasculature of solid tumors, then describe methods by which drugs might be used to inhibit tumor blood flow. Finally, we review some of the methods available for measurement of tumor blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skinner, S. A., Tutton, P. J., and Oā€™Brien, P. E. (1990) Microvascular architecture of experimental colon tumors in the rat. Cancer Res. 50, 2411ā€“2417.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Folkman, J. (1986) How is blood vessel growth regulated in normal and neoplastic tissue?-GHA Clowes memorial award lecture. Cancer Res. 46, 467ā€“473.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Siemann, D. W., Bronskill, M. J., Hill, R. P., and Bush, R. S. (1975) The relationship between mouse arterial partial pressure of oxygen (PaO2) and the effectiveness of localized tumour irradiation. Br. J. Radiol. 48, 662ā€“667.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Shimizu, S., Eguchi, Y., Kamiike, W., Itoh, Y., Hasegawa, J., Yamabe, K., Otsuki, Y., Matsuda, H., and Tsujimoto, Y. (1996) Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL. Cancer Res. 56, 2161ā€“2166.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Alarcon, R. M., Rupnow, B. A., Graeber, T. G., Knox, S. J., and Giaccia, A. J. (1996) Modulation of c-Myc activity and apoptosis in vivo. Cancer Res. 56, 4315ā€“4319.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Teicher, B. A. (1994) Hypoxia and drug resistance. Cancer Metastasis Rev. 13, 139ā€“168.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Reynolds, T. Y., Rockwell, S., and Glazer, P. M. (1996) Genetic instability induced by the tumor microenvironment. Cancer Res. 56, 5754ā€“5757.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Boucher, Y. and Jain, R. K. (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52, 5110ā€“5114.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Lefer, A. M. and Lefer, D. J. (1993) Pharmacology of the endothelium in ische-mia-reperfusion and circulatory shock. Annu. Rev. Pharmacol. Toxicol. 33, 71ā€“90.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Parkins, C. S., Dennis, M. F., Stratford, M. R., Hill, S. A., and Chaplin, D. J. (1995) Ischemia reperfusion injury in tumors: the role of oxygen radicals and nitric oxide. Cancer Res. 55, 6026ā€“6029.

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Wilson, W. R. (1992) Tumour hypoxia: challenges for cancer chemotherapy, in Cancer Biology and Medicine, 3, The Search for New Anticancer Drugs (Waring, M. J. and Ponder, B. A. J., eds.), Kluwer Academic Publishers, Lancaster, PA, pp. 87ā€“131.

    Google ScholarĀ 

  12. Brown, J. M. (1993) SR-4233 (tirapazamine)-anew anticancer drug exploiting hypoxia in solid tumours. Br. J. Cancer 67, 1163ā€“1170.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Naredi, P. L. J., Lindner, P. G., Holmberg, S. B., Stenram, U., Peterson, A., and Hafstrom, L. R. (1993) The effects of tumour necrosis factor-alpha on the vascular bed and blood flow in an experimental rat hepatoma. Intl. J. Cancer 54, 645ā€“649.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Pedley, R. B., Begent, R. H., Boden, J. A., Boxer, G. M., Boden, R., and Keep, P. A. (1994) Enhancement of radioimmunotherapy by drugs modifying tumour blood flow in a colonic xenograft model. Intl. J. Cancer 57, 830ā€“835.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Pruijn, F. B., van Daalen, M., Holford, N. H. G., and Wilson, W. R. (1997) Mechanisms of enhancement of the antitumour activity of melphalan by the tumour blood flow inhibitor 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother. Pharmacol. 39, 541ā€“546.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Coleman, C. N. (1988) Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity.J. Natl. Cancer. Inst. 80, 310ā€“317.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Vaupel, P., Kallinowski, F., and Okunieff, P. (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449ā€“6465.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Andrade, S. P., Hart, I. R., and Piper, P. J. (1992) Inhibitors of nitric oxide synthase selectively reduce flow in tumour-associated neovasculature. Br. J. Pharmacol. 107, 1092ā€“1095.

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Stone, H. B., Minchinton, A. I., Lemmon, M., Menke, D., and Brown, J. M. (1992) Pharmacological modification of tumor blood flow: lack of correlation between alteration of mean arterial blood pressure and changes in tumor perfusion. Intl. J. Radiat. Oncol. Biol. Phys. 22, 79ā€“86.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Mattsson, J., Lilja, J., and Peterson, H. I. (1982) Influence of vasoactive drugs on local tumor blood flow. Eur. J. Cancer Clin. Oncol. 18, 677ā€“684.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Hori, K., Zhang, Q. H., Saito, S., Tanda, S., Li, H. C., and Suzuki, M. (1993) Microvascular mechanisms of change in tumor blood flow due to angiotensin-II, epinephrine, and methoxamine: a functional morphometric study. Cancer Res. 53, 5528ā€“5534.

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Lee, I., Boucher, Y., Demhartner, T. J., and Jain, R. K. (1994) Changes in tumour blood flow, oxygenation and interstitial fluid pressure induced by pentoxifylline. Br. J. Cancer 69, 492ā€“496.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Cater, D. B., Petrie, A., and Watkinson, D. A. (1965) Effect of 5-hydrox-ytryptamine and cyproheptadine on tumour blood flow. Acta Radiolog. Ther. Phys. Biol. 3, 109ā€“128.

    Google ScholarĀ 

  24. StĆ¼cker, O., Vicaut, E., and Teisseire, B. (1992) Specific response to 5-HT2 agonists by arterioles linked to Meth A tumors in mice. Am. J. Physiol. 262 (Pt 2), H704ā€“H709.

    PubMedĀ  Google ScholarĀ 

  25. Baguley, B. C., Cole, G., Thomsen, L. L., and Zhuang, L. (1993) Serotonin involvement in the antitumour and host effects of flavone-8-acetic acid and 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother. Pharmacol. 33, 77ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Manda, T., Nishigaki, F., Mori, J., and Shimomura, K. (1988) Important role of serotonin in the antitumor effects of tumor necrosis factor-alpha in mice. Cancer Res. 48, 4250ā€“4255.

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Pedley, R. B., Boden, J. A., Boden, R., Boxer, G. M., Flynn, A. A., Keep, P. A., and Begent, R. H. J. (1996) Ablation of colorectal xenografts with combined radio immunotherapy and tumor blood flow-modifying agents. Cancer Res. 56, 3293ā€“3300.

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Lash, C. J., Li, A. E., Ruthland, M., Baguley, B. C., Zwi, L. J., and Wilson, W. R. (1998) Enhancement of the antitumour effects of the antivascular agent 5,6-dimethylxanethenone-4-acetic acid (DMXAA) by combination with 5-hydrox-ytryptamine and bioreductive drugs. Br. J. Cancer 78, 439ā€“445.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Vanhoutte, P. M. (1991) Serotonin, hypertension and vascular disease. Netherlands J. Med. 38, 35ā€“42.

    CASĀ  Google ScholarĀ 

  30. Peters, C. E. and Chaplin, D. J. (1992) Blood flow modification in the SCCVII tumor: effects of 5-hydroxytryptamine, hydralazine and propranolol. Intl. J. Radiat. Oncol. Biol. Phys. 22, 463ā€“465.

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Horsman, M. R., Christensen, K. L., and Overgaard, J. (1992) Relationship between the hydralazine-induced changes in murine tumor blood supply and mouse blood pressure. Intl. J. Radiat. Oncol. Biol. Phys. 22, 455ā€“458.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Honess, D. J. and Bleehen, N. M. (1992) Comparative effects of hydralazine on perfusion of KHT tumor, kidney and liver and on renal function in mice. Intl. J. Radiat. Oncol. Biol. Phys. 22, 953ā€“961.

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Jones, G. R., Ellis, R., and Frohn, M. J. (1981) Drug-induced interference with energy metabolism in the S180 sarcoma: a new principle in the production of selective tumor injury. Oncodev. Biol. Med. 2, 155ā€“164.

    CASĀ  PubMedĀ  Google ScholarĀ 

  34. Chaplin, D. J. and Acker, B. (1987) The effect of hydralazine on the tumor cytotoxicity of the hypoxic cell cytotoxin RSU-1069. Evidence for therapeutic gain. Int. J. Radiat. Oncol. Biol. Phys. 13, 579ā€“585.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Chaplin, D. J. (1986) Potentiation of RSU-1069 tumour cytotoxicity by 5-hydroxytryptamine (5-HT). Br. J. Cancer 54, 727ā€“731.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Kalmus, J., Okunieff, P., and Vaupel, P. (1990) Dose-dependent effects of hydralazine on microcirculatory function and hyperthermic response of murine FSall tumors. Cancer Res. 50, 15ā€“19.

    CASĀ  PubMedĀ  Google ScholarĀ 

  37. Belfi, C. A., Paul, C. R., Shan, S., and Ngo, F. Q. (1994) Comparison of the effects of hydralazine on tumor and normal tissue blood perfusion by MRI. Intl. J. Radiat. Oncol. Biol. Phys. 29, 473ā€“479.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Vaupel, P. (1975) Interrelationship between mean arterial blood pressure, blood flow, and vascular resistance in solid tumor tissue of DS-carcinosarcoma. Experientia 31, 587ā€“589.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Trotter, M. J., Acker, B. D., and Chaplin, D. J. (1989) Histological evidence for nonperfused vasculature in a murine tumor following hydralazine administration. Intl. J. Radiat. Oncol. Biol. Phys. 17, 785ā€“789.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Chaplin, D. J., Acker, B., and Olive, P. L. (1989) Potentiation of the tumor cytotoxicity of melphalan by vasodilating drugs. Intl. J. Radiat. Oncol. Biol. Phys. 16, 1131ā€“1135.

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Atassi, G., Briet, P., Berthelon, J.-J., and Collonges, F. (1985) Synthesis and antitumor activity of some 8-substituted 4-oxo-4H-1-benzopyrans. Eur. J. Med. Chem. 5, 393ā€“402.

    Google ScholarĀ 

  42. Plowman, J., Narayanan, V. L., Dykes, D., Szarvasi, E., Briet, P., Yoder, O. C., and Paull, K. D. (1986) Flavone acetic acid: a novel agent with preclinical antitumor activity against colon adenocarcinoma 38 in mice. Cancer. Treat. Rep. 70, 631ā€“638.

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Finlay, G. J., Smith, G. P., Fray, L. M., and Baguley, B. C. (1988) Effect of flavone acetic acid (NSC 347512) on Lewis lung carcinoma: evidence for an indirect effect. J. Natl. Cancer Inst. 80, 241ā€“245.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Evelhoch, J. L., Bissery, M.-C., Chabot, G. G., Simpson, N. E., McCoy, C. L., Heilbrun, L. K., and Corbett, T. H. (1988) Flavone acetic acid (NSC 347512)-induced modulation of murine tumor physiology monitored by in vivo nuclear magnetic resonance spectroscopy. Cancer Res. 48, 4749ā€“4755.

    CASĀ  PubMedĀ  Google ScholarĀ 

  45. Zwi, L. J., Baguley, B. C., Gavin, J. B., and Wilson, W. R. (1989) Blood flow failure as a major determinant in the antitumor action of flavone acetic acid (NSC 347512). J. Natl. Cancer Inst. 81, 1005ā€“1013.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Hill, S., Williams, K. B., and Denekamp, J. (1989) Vascular collapse after flavone acetic acid. A possible machanism of its antitumour action. Eur. J. Cancer Clin. Oncol. 25, 1419ā€“1423.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Bibby, M. C., Double, J. A., Loadman, P. M., and Duke, C. V. (1989) Reduction of tumor blood flow by flavone acetic acid: a possible component of therapy. J. Natl. Cancer Inst. 81, 216ā€“220.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Smith, G. P., Calveley, S. B., Smith, M. J., and Baguley, B. C. (1987) Flavone acetic acid (NSC 347512) induces haemorrhagic necrosis of mouse colon 26 and 38 tumours. Eur. J. Cancer Clin. Oncol. 23, 1209ā€“1212.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Baguley, B. C., Calveley, S. B., Crowe, K. K., Fray, L. M., Oā€™Rourke, S. A., and Smith, G. P. (1989) Comparison of the effects of flavone acetic acid, fostriecin, homoharringtonine and tumour necrosis factor alpha on Colon 38 tumors in mice. Eur. J. Cancer Clin. Oncol. 25, 263ā€“269.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Zwi, L. J., Baguley, B. C., Gavin, J. B., and Wilson, W. R. (1994) The morphological effects of the anti-tumour agents flavone acetic acid and 5,6-dimethylxanthenone acetic acid on the colon 38 mouse tumour. Pathology 26, 161ā€“169.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Hill, S. A., Williams, K. B., and Denekamp, J. (1992) A comparison of vascular-mediated tumor cell death by the necrotizing agents GR63178 and flavone acetic acid. Intl. J. Radiat. Oncol. Biol. Phys. 22, 437ā€“441.

    ArticleĀ  CASĀ  Google ScholarĀ 

  52. Honess, D. J. and Bleehen, N. M. (1991) Effects of two tumour blood flow modifiers, hydralazine and flavone acetic acid, on KHT tumours and normal tissues in mice. Intl. J. Radiat. Biol. 60, 249ā€“253.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Mace, K. F., Hornung, R. L., Wiltrout, R. H., and Young, H. A. (1990) Correlation between in vivo induction of cytokine gene expression by flavone acetic acid and strict dose dependency and therapeutic efficacy against murine renal cancer. Cancer Res. 50, 1742ā€“1747.

    CASĀ  PubMedĀ  Google ScholarĀ 

  54. Hornung, R. L., Back, T. C., Zaharto, D. S., Urba, W. J., Longo, D. L., and Wiltrout, R. H. (1988) Augmentation of natural killer (NK) activity, induction of interferon and development of tumor immunity during the successful treatment of established murine renal cancer using flavone acetic acid (FAA) and interleukin 2. J. Immunol. 141, 3671ā€“3679.

    CASĀ  PubMedĀ  Google ScholarĀ 

  55. Mahadevan, V., Malik, S. T. A., Meager, A., Fiers, W., Lewis, G. P., and Hart, I. R. (1990) Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown. Cancer Res. 50, 5537ā€“5542.

    CASĀ  PubMedĀ  Google ScholarĀ 

  56. North, R. J. and Havell, E. A. (1988) The antitumour function of tumour necrosis factor (TNF) II. Analysis of the role of endogenous TNF in endotoxin-induced hemorrhagic necrosis and regression of an established sarcoma. J. Exp. Med. 167, 1086ā€“1099.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Watanabe, N., Yoshiro, N., Umeno, H., Kuriyama, H., Neda, H., Yamauchi, N., Maeda, M., and Urushizaki I. (1988) Toxic effect of tumor necrosis factor on tumor vasculature. Cancer Res. 48, 2179ā€“2183.

    CASĀ  PubMedĀ  Google ScholarĀ 

  58. Murray, J. C., Smith, K. A., and Thurston, G. (1989) Flavone acetic acid induces a coagulopathy in mice. Br. J. Cancer 60, 729ā€“733.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Ferrero, E., Villa, A., Ferrero, M. E., Toninelli, E., Bender, J. R., Pardi, R., and Zocchi, M. R. (1996) Tumor necrosis factor alpha-induced vascular leakage involves PECAM1 phosphorylation. Cancer Res. 56, 3211ā€“3215.

    CASĀ  PubMedĀ  Google ScholarĀ 

  60. Sun, J. R. and Brown, J. M. (1989) Enhancement of the antitumor effect of flavone acetic acid by the bioreductive cytotoxic drug SR 4233 in a murine carcinoma. Cancer Res. 49, 5664ā€“5670.

    CASĀ  PubMedĀ  Google ScholarĀ 

  61. Cliffe, S., Taylor, M. L., Rutland, M., Baguley, B. C., Hill, R. P., and Wilson, W. R. (1994) Combining bioreductive drugs (SR 4233 or SN 23862) with the vaso-active agents flavone acetic acid or 5,6-dimethylxanthenone acetic acid. Intl. J. Radiat. Oncol. Biol. Phys. 29, 373ā€“377.

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Sakaguchi, Y., Maehara, Y., Baba, H., Kusumoto, T., Sugimachi, K., and Newman, R. A. (1992) Flavone acetic acid increases the antitumor effect of hyperthermia in mice. Cancer Res. 52, 3306ā€“3309.

    CASĀ  PubMedĀ  Google ScholarĀ 

  63. Kerr, D. J. and Kaye, S. B. (1989) Flavone acetic acid-preclinical and clinical activity. Eur. J. Cancer Clin. Oncol. 25, 1271,1272.

    ArticleĀ  Google ScholarĀ 

  64. Oā€™Reilly, S. M., Rustin, G. J. S., Farmer, K., Burke, M., Hill, S., and Denekamp, J. (1993) Flavone acetic acid (FAA) with recombinant interleukin-2 (rIL-2) in advanced malignant melanoma.1. Clinical and vascular studies. Br. J. Cancer 67, 1342ā€“1345.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  65. Futami, H., Eader, L. A., Komschlies, K. L., Bull, R., Gruys, M. E., Ortaldo, J. R., Young, H. A., and Wiltrout, R. H. (1991) Flavone acetic acid directly induces expression of cytokine genes in mouse splenic leukocytes but not in human peripheral blood leukocytes. Cancer Res. 51, 6596ā€“6602.

    CASĀ  PubMedĀ  Google ScholarĀ 

  66. Rewcastle, G. W., Atwell, G. J., Baguley, B. C., Calveley, S. B., and Denny, W. A. (1989) Potential antitumor agents. 58. Synthesis and structure-activity relationships of substituted xanthenone-4-acetic acids active against the Colon 38 tumor in vivo. J. Med. Chem. 32, 793ā€“799.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Rewcastle, G. W., Atwell, G. J., Zhuang, L., Baguley, B. C., and Denny, W. A. (1991) Potential antitumor agents. 61. Structure-activity relationships for in vivo colon-38 activity among disubstituted 9-oxo-9H-xanthene-4-acetic acids. J.Med. Chem. 34, 217ā€“222.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Ching, L.-M., Joseph, W. R., Zhuang, L., Atwell, G. J., Rewcastle, G. R., Denny, W. A., and Baguley, B. C. (1991) Induction of natural killer activity by xanthenone analogues of flavone acetic acid: relation with antitumour activity. Eur. J. Cancer. 27, 79ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Zwi, L. J., Baguley, B. C., Gavin, J. B., and Wilson, W. R. (1994) Correlation between immune and vascular activities of xanthenone acetic acid antitumor agents. Oncol. Res. 6, 79ā€“85.

    CASĀ  PubMedĀ  Google ScholarĀ 

  70. Philpott, M., Baguley, B. C., and Ching, L.-M. (1995) Induction of tumour necrosis factor-alpha by single and repeated doses of the antitumour agent 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother. Pharmacol. 36, 143ā€“148.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Thomsen, L. L., Ching, L. M., Zhuang, L., Gavin, J. B., and Baguley, B. C. (1991) Tumor-dependent increased plasma nitrate concentrations as an indication of the antitumor effect of flavone-8-acetic acid and analogues in mice. Cancer Res. 51, 77ā€“81.

    CASĀ  PubMedĀ  Google ScholarĀ 

  72. Baguley, B. C., Zhuang, L., and Kestell, P. (1997) Increased plasma serotonin following treatment with flavone-8-acetic acid, 5,6-dimethylxanthenone-4-acetic acid, vinblastine, and colchicine-relation to vascular effects. Oncol. Res. 9, 55ā€“60.

    CASĀ  PubMedĀ  Google ScholarĀ 

  73. Ching, L. M., Joseph, W. R., Crosier, K. E., and Baguley, B. C. (1994) Induction of tumor necrosis factor-alpha messenger RNA in human and murine cells by the flavone acetic acid analogue 5,6-dimethylxanthenone-4-acetic acid (NSC 640488). Cancer Res. 54, 870ā€“872.

    CASĀ  PubMedĀ  Google ScholarĀ 

  74. Philpott, M., Joseph, W. R., Crosier, K. E., Baguley, B. C., and Ching, L.-M. (1997) Production of tumour necrosis factor-alpha by cultured human peripheral blood leucocytes in response to the antitumour agent 5,6-dimethylxanthenone-4-acetic acid (NSC 640488). Br. J. Cancer, in press.

    Google ScholarĀ 

  75. Jordan, M. A., Thrower, D., and Wilson, L. (1991) Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res. 51, 2212ā€“2222.

    CASĀ  PubMedĀ  Google ScholarĀ 

  76. Baguley, B. C., Holdaway, K. M., Thomsen, L. L., Zhuang, L., and Zwi, L. J. (1991) Inhibition of growth of colon-38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur. J. Cancer 27, 482ā€“487.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  77. Bogdan, C. and Ding, A. (1992) Taxol, a micro tubule-stabilizing antineoplastic agent, induces expression of tumor necrosis factor alpha and interleukin-1 in macrophages. J. Leukocyte Biol. 52, 119ā€“121.

    CASĀ  PubMedĀ  Google ScholarĀ 

  78. Hill, S. A., Lonergan, S. J., Denekamp, J., and Chaplin, D. J. (1993) Vinca alkaloidsā€”anti-vascular effects in a murine tumour. Eur. J. Cancer 29A, 1320ā€“1324.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  79. Hill, S. A., Lonergan, S. J., Denekamp, J., and Chaplin, D. J. (1994) The effect of Vinca alkaloids on tumour blood flow. Adv. Exp. Med. Biol. 345, 417ā€“422.

    CASĀ  PubMedĀ  Google ScholarĀ 

  80. Hill, S. A., Sampson, L. E., and Chaplin, D. J. (1995) Anti-vascular approaches to solid tumour therapy: evaluation of vinblastine and flavone acetic acid. Intl. J. Cancer 63, 119ā€“123.

    ArticleĀ  CASĀ  Google ScholarĀ 

  81. Dark, G. G., Hill, S. A., Prise, V. E., Tozer, G. M., Pettit, G. R., and Chaplin, D. J. (1997) Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 57, 1829ā€“1834.

    CASĀ  PubMedĀ  Google ScholarĀ 

  82. Watts, M. E., Woodcock, M., Arnold, S., and Chaplin, D. J. (1997) Effects of novel and conventional anti-cancer agents on human endothelial permeability: influence of tumour secreted factors. Anticancer Res. 17, 71ā€“75.

    CASĀ  PubMedĀ  Google ScholarĀ 

  83. Pallavicini, M. G. and Hill, R. P. (1983) Effect of tumor blood flow manipulations on radiation response. Intl. J. Radiat. Oncol. Biol. Phys. 9, 1321ā€“1325.

    ArticleĀ  CASĀ  Google ScholarĀ 

  84. Cullen, B. M. and Walker, H. C. (1985) The effect of several anaesthetics on the blood pressure and heart rate of the mouse and on the radiation response of the mouse sarcoma RIF-1. Intl. J. Radiat. Biol. 48, 761ā€“771.

    ArticleĀ  CASĀ  Google ScholarĀ 

  85. Zanelli, G. D. and Lucas, P. B. (1976) Effect of stress on blood perfusion and vascular space in transplanted mouse tumors. Br. J. Radiol. 49, 382,383.

    ArticleĀ  Google ScholarĀ 

  86. Joiner, B., Hirst, V. K., McKeown, S. R., McAleer, J. J. A., and Hirst, D. G. (1993) The effect of recombinant human erythropoietin on tumour radiosensitivity and cancer-associated anaemia in the mouse. Br. J. Cancer 68, 720ā€“726.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  87. Penhaligon, M. (1984) Radioprotection of mouse skin vasculature and the RIF-1 fibrosarcoma by WR-2721. Intl. J. Radiat. Oncol. Biol. Phys. 10, 1541ā€“1544.

    ArticleĀ  CASĀ  Google ScholarĀ 

  88. Shibamoto, Y., Sasai, K., and Abe, M. (1987) The radiation response of SCCVII tumor cells in C3H/He mice varies with the irradiation conditions. Radiat. Res. 109, 352ā€“354.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  89. Trotter, M. J., Chaplin, D. J., and Olive, P. L. (1991) Effect of angiotensin II on intermittent tumour blood flow and acute hypoxia in the murine SCCVII carcinoma. Eur. J. Cancer Clin. Oncol. 27, 887ā€“893.

    ArticleĀ  CASĀ  Google ScholarĀ 

  90. Field, S. B., Needham, S., Burney, I. A., Maxwell, R. J., Coggle, J. E., and Griffiths, J. R. (1991) Differences in vascular response between primary and transplanted tumours. Br. J. Cancer 63, 723ā€“726.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  91. Ward-Hartley, K. A. and Jain, R. K. (1987) Effect of glucose and galactose on microcirculatory flow in normal and neoplastic tissues in rabbits. Cancer Res. 47, 371ā€“377.

    CASĀ  PubMedĀ  Google ScholarĀ 

  92. Kimura, H., Braun, R. D., Ong, E. T., Hsu, R., Secomb, T. W., Papahadjopoulos, D., Hong, K., and Dewhirst, M. W. (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res. 56, 5522ā€“5528.

    CASĀ  PubMedĀ  Google ScholarĀ 

  93. Suzuki, T., Yanagi, K., Ookawa, K., Hatakeyama, K., and Ohshima, N. (1996) Flow visualisation of microcirculation in solid tumor tissues: intravital microscopic observation of blood circulation by use of a confocal laser scanning microscope. Front. Med. Biol. Engineer 7, 253ā€“263.

    CASĀ  Google ScholarĀ 

  94. Vaupel, P. W. and Okunieff, P. G. (1988) Role of hypovolemic hemoconcentration in dose-dependent flow decline observed in murine tumors after intraperitoneal administration of glucose or mannitol. Cancer Res. 48, 7102ā€“7106.

    CASĀ  PubMedĀ  Google ScholarĀ 

  95. Guichard, M., Lespinasse, F., Trotter, M., Durand, R., and Chaplin, D. (1991) The effect of hydralazine on blood flow and misonidazole toxicity in human tumour xenografts. Radiother. Oncol. 20, 117ā€“123.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  96. Chaplin, D. J. and Hill, S. A. (1995) Temporal heterogeneity in microregional erythrocyte flux in experimental solid tumours. Br. J. Cancer 71, 1210ā€“1213.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  97. Pigott, K. H., Hill, S. A., Chaplin, D. J., and Saunders, M. I. (1996) Microregional fluctuations in perfusion within human tumours detected using laser Doppler flowmetry. Radiother. Oncol. 40, 45ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  98. Sapirstein, L. A. (1958) Regional blood flow by fractional distribution of indicators. Am. J. Physiol. 193, 161ā€“168.

    CASĀ  PubMedĀ  Google ScholarĀ 

  99. Zanelli, G. D. and Fowler, J. F. (1974) The measurement of blood perfusion in experimental tumors by uptake of 86Rb1. Cancer Res. 34, 1451ā€“1456.

    CASĀ  PubMedĀ  Google ScholarĀ 

  100. Kaelin, W. G., Jr., Shrivastav, S., and Jirtle, R. L. (1984) Blood flow to primary tumors and lymph node metastases in SMT-2A tumor-bearing rats following intravenous flunarizine. Cancer Res. 44, 896ā€“899.

    CASĀ  PubMedĀ  Google ScholarĀ 

  101. DiPette, D. J., Ward-Hartley, K. A., and Jain, R. K. (1986) Effect of glucose on systemic hemodynamics and blood flow rate in normal and tumor tissues in rats. Cancer Res. 46, 6299ā€“6304.

    CASĀ  PubMedĀ  Google ScholarĀ 

  102. Olive, P. L., Chaplin, D. J., and Durand, R. E. (1985) Pharmacokinetics, binding and distribution of Hoechst 33342 in spheroids and murine tumours. Br. J. Cancer 52, 739ā€“746.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  103. Trotter, M. J., Chaplin, D. J., and Olive, P. L. (1989) Use of a carbocyanine dye as a marker of function vasculature in murine tumours. Br. J. Cancer 59, 706ā€“709.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  104. Smith, K. A., Hill, S. A., Begg, A. C., and Denekamp, J. (1988) Validation of the fluorescent dye Hoechst 33342 as a vascular space marker in tumours. Br. J. Cancer 57, 247ā€“253.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  105. Lassen, N. A., Lindberg, J., and Munck, O. (1964) Measurement of blood flow through skeletal muscle by intramuscular injection of xenon-133. Lancet, 1, 686ā€“689.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  106. Brown, S. L., Hunt, J. W., and Hill, R. P. (1988) A comparison of the rate of clearance of xenon (133Xe) and pertechnetate ion (99mTcO-4) in murine tumors and normal leg muscles. Nuclear Med. Biol. 15, 381ā€“390.

    CASĀ  Google ScholarĀ 

  107. Cerretelli, P., Marconi, C., Pendergast, D., Meyer, M., Heisler, N., and Piiper, J. (1984) Blood flow in exercising muscles by xenon clearance and by microsphere trapping. J.Appl. Physiol. 56, 24ā€“30.

    CASĀ  PubMedĀ  Google ScholarĀ 

  108. Kallman, R. F., Denardo, G., and Stasch, M. (1972) Blood flow in irradiated mouse sarcoma as determined by the clearance of xenon-133. Cancer Res. 32, 483ā€“490.

    CASĀ  PubMedĀ  Google ScholarĀ 

  109. Evelhoch, J. L., Sapareto, S. A., Nussbaum, G. H., and Ackman, J. J. H. (1986) Correlation between 31P NMR spectroscopy and 15O perfusion measurements in the RIF-1 murine tumor in vivo. Radiat. Res. 106, 122ā€“131.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  110. Rofstad, E. K., DeMuth, P., Fenton, B. M., Ceckler, T. L., and Sutherland, R. M. (1989) 31P NMR spectroscopy and HbO2 cryospectrophotometry in prediction of tumor radioresistance caused by hypoxia. Intl. J. Radiat. Oncol. Biol. Phys. 16, 919ā€“923.

    ArticleĀ  CASĀ  Google ScholarĀ 

  111. Okunieff, P., Kallinowski, F., Vaupel, P., and Neuringer, L. J. (1988) Effects of hydralazine-induced vasodilation on the energy metabolism of murine tumors studied by in vivo 31P-nuclear magnetic resonance spectroscopy. J.Natl. Can-cer. Inst. 80, 745ā€“750.

    ArticleĀ  CASĀ  Google ScholarĀ 

  112. Burney, I. A., Maxwell, R. J., Griffiths, J. R., and Field, S. B. (1991) The potential for prazosin and calcitonin gene-related peptide (CGRP) in causing hypoxia in tumours. Br. J. Cancer 64, 683ā€“688.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  113. Bhujwalla, Z. M., Shungu, D. C., and Glickson, J. D. (1996) Effects of blood flow modifiers on tumor metabolism observed in vivo by proton magnetic resonance spectroscopic imaging. Magnetic Resonance Med. 36, 204ā€“211.

    ArticleĀ  CASĀ  Google ScholarĀ 

  114. Stone, H. B., Brown, J. M., Phillips, T. L., and Sutherland, R. M. (1993) Oxygen in human tumors: Correlations between methods of measurement and response to therapy. Radiat. Res. 136, 422ā€“434.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  115. Raleigh, J. A., Dewhirst, M. W., and Thrall, D. E. (1996) Measuring tumor hypoxia. Seminars Rad. Oncol. 6, 37ā€“45.

    ArticleĀ  Google ScholarĀ 

  116. Vaupel, P. W. and Hockel, M. (1995) Oxygenation status of human tumors: a reappraisal using computerized pO2 histography, in Tumor Oxygenation (Vaupel, P. W., Kelleher, D. K., and Gunderoth, M., eds.), Fischer-Verlag, Stuttgart, Germany, pp. 219ā€“232.

    Google ScholarĀ 

  117. Chapman, J. D., Coia, L. R., Stobbe, C. C., Engelhardt, E. L., Fenning, M. C., and Schneider, R. F. (1996) Prediction of tumour hypoxia and radioresistance with nuclear medicine markers. Br. J. Cancer 74XXVII, S204ā€“S208.

    Google ScholarĀ 

  118. Zwi, L. J. (1992) The mechanism of the anti-tumour action of flavone acetic acid and its xanthenone acetic acid analogs. Thesis, The University of Auckland, New Zealand.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Lai-Ming, C., Wilson, W.R., Baguley, B.C. (2000). Inhibition of Tumor Blood Flow. In: Francis, G.E., Delgado, C. (eds) Drug Targeting. Methods in Molecular Medicineā„¢, vol 25. Humana Press. https://doi.org/10.1385/1-59259-075-6:133

Download citation

  • DOI: https://doi.org/10.1385/1-59259-075-6:133

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-531-7

  • Online ISBN: 978-1-59259-075-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics