Advertisement

Preparation of Recombinant RNase Single-Chain Antibody Fusion Proteins

  • Dianne L. Newton
  • Susanna M. Rybak
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 25)

Abstract

Selective cytotoxicity is an important goal of specific drug targeting. Toward this end, toxins isolated primarily from higher plants and bacteria have been coupled to monoclonal antibodies (MAbs) and evaluated for their clinical efficacy in cancer, AIDS, and immunological diseases (1,2). Immune responses against murine monoclonal antibodies MAbs (3,4) and antitoxin antibodies have been detected in both animals and humans treated with immunotoxins (ITs) (5, 6, 7) and present a major obstacle to the successful application of this technology. Although development of humanized antibodies have alleviated some of these effects (8, and references therein), the toxins themselves remain a problem. Consequently, the identification of human proteins to be used as components of immunoconjugates is highly desirable

Keywords

Inclusion Body Polymerase Chain Reaction Reaction Luria Broth Sense Direction Fast Protein Liquid Chromatography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Vitetta, E. S., Thorpe, P. E., and Uhr, J. W. (1993) Immunotoxins: magic bullets or misguided missiles. TIPS 14, 148–154.PubMedGoogle Scholar
  2. 2.
    Brinkmann, U. and Pastan, I. (1994) Immunotoxins against cancer. Biochim. Biophys. Acta 1198, 27–45.PubMedGoogle Scholar
  3. 3.
    Sawler, D. L., Bartholomew, R. M., Smith, L. M., and Dillman, R. (1985) Human immune response to multiple injections of murine monoclonal IgG. J. Immunol 135, 1530–1535.Google Scholar
  4. 4.
    Schroff, R. W., Foon, K. A., Beatty, S. M., Oldham, R., and Morgan, A. (1985) Human anti-murine immunoglobulin response in patients receiving monoclonal antibody therapy. Cancer Res 45, 879–885.PubMedGoogle Scholar
  5. 5.
    Rybak, S. M. and Youle, R. J. (1991) Clinical use of immunotoxins: monoclonal antibodies conjugated to protein toxins. Immunol. Allergy Clin. N. Am 11(2), 359–380.Google Scholar
  6. 6.
    Harkonen, S., Stoudemire, J., Mischak, R., Spitler, L., Lopez, H., and Scannon, P. (1987) Toxicity and immunogenicity of monoclonal antimelanoma antibody-ricin A chain immunotoxins in rats. Cancer Res 47, 1377–1385.PubMedGoogle Scholar
  7. 7.
    Hertler, A. (1988) Human response to immunotoxins, in Immunotoxins (Frankel, A. E, ed), Kluwer, Boston, MA, pp. 475–480.Google Scholar
  8. 8.
    Khazaeli, M. B., Conry, R. M., and LoBuglio, A. F. (1994) Human immune response to monoclonal antibodies. J. Immunother 15, 42–52.CrossRefGoogle Scholar
  9. 9.
    Beintema, J. J., Schuller, C., Irie, M., and Carsana, A. (1988) Molecular evolution of the ribonuclease superfamily. Prog. Biophys. Mol. Biol 51, 165–192.CrossRefPubMedGoogle Scholar
  10. 10.
    Gleich, G. J., Loegering, D. A., Bell, M. P., Checkel, J. L., Ackerman, S. J., and McKean, D. J. (1986) Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc. Natl. Acad. Sci. USA 83, 3146–3150.CrossRefPubMedGoogle Scholar
  11. 11.
    Strydom, D. J., Fett, J. W., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F., and Vallee, B. L. (1985) Amino acid sequence of human tumor derived angiogenin. Biochemistry 24, 5486–5494.CrossRefPubMedGoogle Scholar
  12. 12.
    Kurachi, K., Davie, E. W., Strydom, D. J., Riordan, J. F., and Vallee, B. L. (1985) Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24, 5494–5499.CrossRefPubMedGoogle Scholar
  13. 13.
    Fett, J. W., Strydom, D. J., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F., and Vallee, B. L. (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24, 5480–5486.CrossRefPubMedGoogle Scholar
  14. 14.
    St. Clair, D. K., Rybak, S. M., Riordan, J. F., and Vallee, B. L. (1987) Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes. Proc. Natl. Acad. Sci. USA 84, 8330–8334.CrossRefPubMedGoogle Scholar
  15. 15.
    Saxena, S. K., Rybak, S. M., Winkler, G., Meade, H. M., McGray, P., Youle, R. J., and Ackerman, E. J. (1991) Comparison of RNases and toxins upon injection into Xenopus oocytes. J. Biol. Chem 266, 21,208–21,214.PubMedGoogle Scholar
  16. 16.
    Rybak, S. M., Saxena, S. K., Ackerman, E. J., and Youle, R. J. (1991) Cytotoxic potential of RNase and RNase hybrid proteins. J. Biol. Chem 266, 21,202–21, 207.PubMedGoogle Scholar
  17. 17.
    Newton, D. L., Ilercil, O., Laske, D. W., Oldfield, E., Rybak, S. M., and Youle, R. J. (1992) Cytotoxic ribonuclease chimeras: targeted tumoricidal activity in vitro and in vivo. J. Biol. Chem 267, 19,572–19,578.PubMedGoogle Scholar
  18. 18.
    Rybak, S. M., Hoogenboom, H. R., Meade, H., Raus, J. C. M., Schwartz, D., and Youle, R. J. (1992) Humanization of immuntoxins. Proc. Natl. Acad. Sci. USA 89, 3165–3169.CrossRefPubMedGoogle Scholar
  19. 19.
    Newton, D. L., Nicholls, P. J., Rybak, S. M., and Youle, R. J. (1994) Expression and characterization of recombinant human eosinophil-derived neurotoxin anti-transferrin sFv. J. Biol. Chem 269, 26,739–26,745.PubMedGoogle Scholar
  20. 20.
    Newton, D. L., Xue, Y., Olsen, K. A., Fett, J. W., and Rybak, S. M. (1996) Angiogenin single-chain immunofusions: influence of peptide linkers and spacers between fusion protein domains. Biochemistry 35, 545–553.CrossRefPubMedGoogle Scholar
  21. 21.
    Zewe, M., Rybak, S., Dubel, S., Coy, J., Welschof, M., Newton, D., and Little, M. (1997) Cytotoxicity of a human pancreatic RNase A immunotoxin. Immunotechnology 3, 127–136.CrossRefPubMedGoogle Scholar
  22. 22.
    Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., Lee, T., Pope, S. H., Riordan, G. S., and Whitlow, M. (1988) Single-chain antigen-binding proteins. Science 242, 423–426.CrossRefPubMedGoogle Scholar
  23. 23.
    Huston, J. S., Mudgett-Hunter, M., Tai, M. S., McCartny, J., Warren, F., Haber, E., and Oppermann, H. (1991) Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol 203, 46–88.CrossRefPubMedGoogle Scholar
  24. 24.
    Horten, R. M., Cai, Z., Ho, S. N., and Pease, L. R. (1990) Gene splicing by overlay extension: tailor made genes using the polymerase chain reaction. BioTechniques 8, 528–535.Google Scholar
  25. 25.
    Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60–89.CrossRefPubMedGoogle Scholar
  26. 26.
    Horton, R. (1993) In vitro recombination and mutagenesis of DNA; SOEing together tailor-made genes, in Methods in Molecular Biology, vol. 15: PCR Protocols: Current Methods and Applications (White, B. A., ed.), Humana, Totowa, NJ, pp. 251–261.Google Scholar
  27. 27.
    Wehrli, W., Knusel, F., Schmid, K., and Staehelin, M. (1968) Interaction of rifa-mycin with bacterial RNA polymerase. Proc. Natl. Acad. Sci. USA 61, 667–673.CrossRefPubMedGoogle Scholar
  28. 28.
    Worrall, D. M. (1994) Extraction of recombinant protein from bacteria, in Methods in Molecular Biology, vol. 59: cDNA Library Protocols (Cowell, I. G. and Austin, C. A., eds.), Totowa, NJ, pp. 31–37.Google Scholar
  29. 29.
    Buchner, J., Pastan, I., and Brinkmann, U. (1992) A method for increasing the yield of properly folded recombinant fusion proteins: single chain immunotoxins from renaturation of bacterial inclusion bodies. Anal. Biochem 205, 263–270.CrossRefPubMedGoogle Scholar
  30. 30.
    Brinkmann, U., Buchner, J., and Pastan, I. (1992) Independent domain folding of Pseudomonas exotoxin and single-chain immunotoxins: influence of interdomain connections. Proc. Natl. Acad. Sci. USA 89, 3075–3079.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Dianne L. Newton
    • 1
  • Susanna M. Rybak
    • 2
  1. 1.Intramural Research Support Program, SAIC FrederickNational Cancer Institute-Frederick Cancer Research and Development CenterFrederick
  2. 2.Laboratory of Biochemical Physiology, Division of Basic ScienceNational Cancer Institute-Frederick Cancer Research and Development CenterFrederick

Personalised recommendations