Isolation and Characterization of Glycosaminoglycans from Human Atheromatous Vessels

  • Eleni Papakonstantinou
  • Michael Roth
  • George Karakiulakis
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 52)


The complex cascade of events leading to the formation of atheromatous plaques depends on the interaction between several cell types, growth factors, cytokines, and molecules of the extracellular matrix (ECM) (1). Among different molecules of the ECM involved in atherogenesis, the glycosaminoglycan(GAGs) have been reported to contribute to key events leading to the formation of atherosclerotic lesions (2). GAGs are linear acidic polysaccharides of variable length and composition, which occur either in free form or attached to a protein core to form proteoglycans (3). On the basis of their composition, GAGs are grouped into four major categories: hyaluronic acid, heparin and heparan sulfate, chondroitin and dermatan sulfates, and keratan sulfate. ECM GAGs provide structural links between fibrous and cellular elements, contribute to viscoelastic properties, regulate permeability and retention of plasma components within the matrix (2,4), inhibit vascular cell growth (5), affect hemostasis and platelet aggregation (6), and interact with lipoproteins (7) and various growth factors (8,9).


Hyaluronic Acid Uronic Acid Dermatan Sulfate Keratan Sulfate Cellulose Acetate Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ross, R. (1993) The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362, 801–809.CrossRefPubMedGoogle Scholar
  2. 2.
    Wight, T. N. (1989) Cell biology of arterial proteoglycans. Atherosclerosis 9, 1–20.Google Scholar
  3. 3.
    Kjelleãs, L. and Lindahl, U. (1991) Proteoglycans: Structures and Interactions. Annu. Rev. Biochem. 60, 443–75.CrossRefGoogle Scholar
  4. 4.
    Wight, T. N. (1985) Proteoglycans in pathological conditions: Atherosclerosis Fed. Proc. 44, 381–385.PubMedGoogle Scholar
  5. 5.
    Fritze, L. M. S., Reilly, C. F., and Rosenberg, R. D. (1985) An antiproliferative heparan sulfate species produced by post confluent smooth muscle cells. J. Cell Biol. 100, 1041–1049.CrossRefPubMedGoogle Scholar
  6. 6.
    Vijayagopal, P., Radhakrishnamurty, B., Srinivasan, S. R., and Berenson, G. S. (1980) Studies of biological properties of proteoglycans from bovine aorta. Lab. Invest. 42, 190–196.PubMedGoogle Scholar
  7. 7.
    Iverius, P. H. (1972) The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans. J. Biol. Chem. 247, 2607–2613.PubMedGoogle Scholar
  8. 8.
    Ruoslahti, E. and Yamaguchi, Y. (1991) Proteoglycans as modulators of growth factor activities. Cell 64, 867–869.CrossRefPubMedGoogle Scholar
  9. 9.
    Penc, S. F., Pomahac, B., Winkler, T., Dorschner, R. A., Eriksson, E., Herndon, M., and Gallo, R. L. (1998) Dermatan sulfate released after injury is a potent promoter of fibroblast growth factor-2 functions. J. Biol. Chem. 273, 28116–28121.CrossRefPubMedGoogle Scholar
  10. 10.
    Tammi, M., Sepala, P. O., Lehtonen, A., and Mottonen, M. (1978) Connective tissue components in normal and atherosclerotic human coronary arteries. Atherosclerosis 29, 191–194.CrossRefPubMedGoogle Scholar
  11. 11.
    Yla-Herttuala, S., Sumuvuori, H., Karkola, K., Mottonen, M., and Nikkari, T. (1986) Glycosaminoglycans in normal and atherosclerotic human coronary arteries. Lab. Invest. 54, 402–407.PubMedGoogle Scholar
  12. 12.
    Hollmann, J., Schmidt, A., von Bassewitz, D.-B., and Buddecke, E. (1989) Relationship of sulphated glycosaminoglycans and cholesterol content in normal and atherosclerotic human aorta. Arteriosclerosis 9, 154–158.PubMedGoogle Scholar
  13. 13.
    Rooney, P. and Kumar, S. (1993) Inverse relationship between hyaluronan and collagens in development and angiogenesis. Differentiation 54, 1–9.PubMedGoogle Scholar
  14. 14.
    Ross, R. (1971) The smooth muscle cells: II. Growth of smooth muscle cells in culture and formation of elastic fibers. J. Cell Biol. 50, 172–186.CrossRefPubMedGoogle Scholar
  15. 15.
    Hollmann, J., Thiel, J., Schmidt, A., and Buddecke, E. (1986) Increased activities of chondroitin sulfate synthesizing enzymes during proliferation of arterial smooth muscle cells. Exp. Cell Res. 167, 484–94.CrossRefPubMedGoogle Scholar
  16. 16.
    Klynstra, F. B., Botchen, C. J. F., and Van Der Laan, E. J. (1967) Distribution and composition of acid mucopolysaccharides in normal and atherosclerotic human aortas. J. Atheroscler. Res. 7, 301–309.CrossRefPubMedGoogle Scholar
  17. 17.
    Papakonstantinou, E., Karakiulakis, G., Roth, M., and Block, L. H. (1995) Platelet-derived growth factor stimulates the secretion of hyaluronic acid by proliferating human vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA 92, 9881–9885.CrossRefPubMedGoogle Scholar
  18. 18.
    Papakonstantinou, E., Karakiulakis, G., Eickelberg, O., Perruchoud, A. P., Block, L. H., and Roth, M. (1998) A 340 kDa hyaluronic acid secreted by human vascular smooth muscle cells regulates their proliferation and migration. Glycobiology 8, 821–830.CrossRefPubMedGoogle Scholar
  19. 19.
    Papakonstantinou, E., Roth, M., Block, L. H., Mirtsou-Fidani, V., Argiriadis, P., and Karakiulakis, G. (1998) The differential distribution of hyaluronic acid in the layers of human atheromatic aortas is associated with vascular smooth muscle cell proliferation and migration. Atherosclerosis 138, 79–89.CrossRefPubMedGoogle Scholar
  20. 20.
    Bitter, T. and Muir, H. M. (1962) A modified uronic acid carbazol reaction. Anal. Biochem. 4, 330–334.CrossRefPubMedGoogle Scholar
  21. 21.
    Yphantis, D. A. (1960) Rapid determination of molecular weights of peptides and proteins. Ann. NY Acad. Sci. 88, 586.CrossRefGoogle Scholar
  22. 22.
    Papakonstantinou, E. and Misevic, G. (1993) Isolation and characterization of a new class of acidic glycans implicated in sea urchin embryonal cell adhesion. J. Cell. Biochem. 53, 98–113.CrossRefPubMedGoogle Scholar
  23. 23.
    Hata, R. and Nagai, Y. (1972) A rapid and micro method for separation of acidic glycosaminoglycans by two-dimensional electrophoresis. Anal. Biochem. 45, 462–468.CrossRefPubMedGoogle Scholar
  24. 24.
    Papakonstantinou, E., Karakiulakis, G., Aletras, A., and Misevic, G. (1994) A novel class of adhesion acidic glycans in sea urchin embryos. Isolation, characterization and immunological studies during early embryonal development. Eur. J. Biochem. 224, 1067–1077.CrossRefPubMedGoogle Scholar
  25. 25.
    Spencer, B. (1960) The ultra micro determination of inorganic sulphate. Biochem. J. 75, 435–440.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Eleni Papakonstantinou
    • 1
  • Michael Roth
    • 2
  • George Karakiulakis
    • 1
  1. 1.Department of Pharmacology, School of MedicineAristotle University of ThessalonikiGreece
  2. 2.Institute of Respiratory Medicine, Royal Prince Alfred HospitalUniversity of SydneyCamperdownAustralia

Personalised recommendations