Advertisement

Asthma pp 31-39 | Cite as

Culture of Normal Human Airway Epithelial Cells and Measurement of Mucin Synthesis and Secretion

Part of the Methods in Molecular Medicine™ book series (MIMM, volume 44)

Abstract

The plasticity of conducting airway epithelia is well recognized (1, 2, 3). Under normal conditions, the epithelia express mucociliary function, which is the first pulmonary defense mechanism against inhaled air pollutants. Aberrance in this function is either the cause or one of the major contributors to the pathogenesis of various pulmonary diseases, such as asthma and bronchitis. To exert this vital defense function, mucus-secreting cell types of surface epithelium and sub- mucosal gland synthesize and secrete a high-mol-wt mucous glycoprotein, mucin, which is responsible for the viscoelastic property of the surface mucus layer. Secreted mucus, which is able to trap air pollutants and microorganisms, is steadily removed from the airway surface by ciliary escalation. Overall, the coordinated mucociliary function helps to maintain homeostasis in airway lumen.

Keywords

Ethylene Diamine Tetraacetic Acid Ethylene Diamine Tetraacetic Acid Serial Cultivation Mucociliary Function Surface Mucus Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Basbaum, C. and Jany, B. (1990) Plasticity in the airway epithelium. Am. J. Physiol. (Lung Cell Mol. Physiol.) 259, L38–L46.Google Scholar
  2. 2.
    Jetten, A. M. (1993) Proliferation and differentiation in normal and neoplastic tracheobronchial epithelial cells, in Lung Cancer and Differentiation: Implications for Diagnosis and Treatment (Bernal, S. D. and Hesketh, P. J., eds.), Marcel Dekker, New York, pp. 3–43.Google Scholar
  3. 3.
    Wu, R. (1997) Growth and differentiation of tracheobronchial epithelial cells, in Lung Growth and Development (McDonald, J. A., ed.), Marcel Dekker, New York, pp. 211–241.Google Scholar
  4. 4.
    Wu, R. (1986) In vitro differentiation of airway epithelial cells, in In Vitro Models of Respiratory Epithelium (Schiff, L. J., ed.), CRC, Boca Raton, FL, pp. 1–26.Google Scholar
  5. 5.
    Lechner, J. F., Stoner, G. D., Yoakum, G. H., Willey, J. C., Grafstrom, R. C., Mastui, T., LaVeck, M. A., and Harris, C. C. (1986) In vitro carcinogenesis studies with human tracheobronchial tissues and cells, in In Vitro Models of Respiratory Epithelium (Schiff, L. J., ed.), CRC, Boca Raton, FL, pp. 143–159.Google Scholar
  6. 6.
    Lin, H., Carlson, D. M., St. George, J. A., Plopper, C. G., and Wu, R. (1989) An ELISA method for the quantitation of tracheal mucins from human and nonhu-man primates. Am. J. Respir. Cell Mol. Biol. 1, 41–48.PubMedGoogle Scholar
  7. 7.
    Wu, R., Nolan, E., and Turner, C. (1985) Expression of tracheal differentiated functions in a serum-free hormone-supplemented medium. J. Cell. Physiol. 125, 167–181.CrossRefPubMedGoogle Scholar
  8. 8.
    Kim, K. C., Rearick, J. I., Nettesheim, P., and Jetten, A. M. (1985) Biochemical characterization of mucin secreted by hamster tracheal epithelial cells in primary culture. J. Biol. Chem. 260, 4021–4027.PubMedGoogle Scholar
  9. 9.
    Lee, T. C., Wu, R., Brody, A. R., Barrett, J. C., and Nettesheim, P. (1983) Growth and differentiation of hamster tracheal epithelial cells in culture. Exp. Lung Res. 6, 27–45.CrossRefGoogle Scholar
  10. 10.
    Whitcutt, M. J., Adler, K. B., and Wu, R. (1988) A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell. Dev. Biol. 24, 420–428.CrossRefPubMedGoogle Scholar
  11. 11.
    de Jong, P. M., van Strekenburg, M. A. J. A., Hesseling, S. C., Kempenaar, J. A., Mulder, A. A., Mommaas, A. M., Dijkman, J. H., and Ponec, M. (1994) Ciliogenesis in human bronchial epithelial cells cultured at the air-liquid interface. Am. J. Respir. Cell Mol. Biol. 10, 271–277.PubMedGoogle Scholar
  12. 12.
    Wu, R., Martin, W. R., St. George, J. A., Plopper, C. G., Kurland, G., Last, J. A., et al. (1990) Expression of mucin synthesis and secretion in human tracheo-bronchial epithelial cells grown in culture. Am. J. Respir. Cell Mol. Biol. 3, 467–478.PubMedGoogle Scholar
  13. 13.
    Aikawa, T., Shimura, S., Hidetada, S., Ebina, M., and Takishima, T. (1992) Marked globet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest 101, 916–921.CrossRefPubMedGoogle Scholar
  14. 14.
    Larivee, P., Levine, S. J., Rieves, R. D., and Shelhamer, J. H. (1994) Airway inflammation and mucus hypersecretion, in Airway Secretion: Physiological Bases for the Control of Mucus Hypersecretion (Shimura, S. and Takishima, T., eds.), Marcel Dekker, New York, pp. 469–511.Google Scholar
  15. 15.
    Cheng, P. W., Sherman, J. M., Boat, T. F., and Margaret, B. (1981) Quantitation of radiolabeled mucous glycoproteins secreted by tracheal explants. Anal. Biochem. 117, 301–306.CrossRefPubMedGoogle Scholar
  16. 16.
    Nordman, H., Davies, J. R., Herrmann, A., Karlsson, N. G., Hansson, G. C., and Carlstedt, I. (1997) Mucus glycoproteins from pig gastric mucosa: identification of different mucin populations from the surface epithelium. Biochem. J. 326, 903–910.PubMedGoogle Scholar
  17. 17.
    Basbaum, C. B., Chow, A., Macher, B. A., Finkneiner, W. E., Viessiere, D., and Foresberg, L. S. (1986) Tracheal carbohydrate antigens identified by monoclonal antibodies. Arch. Biochem. Biophys. 249, 363–373.CrossRefPubMedGoogle Scholar
  18. 18.
    St. George, J. A., Cranz, D. L., Zicker, S., Etchison, J. R., Dungworth, D. L., and Plopper, C. G. (1985) An immunohistochemical characterization of rhesus monkey respiratory secretions using monoclonal antibodies. Am. Rev. Respir. Dis. 132, 556–563.PubMedGoogle Scholar
  19. 19.
    Robinson, C. B., Martin, W. R., Ratliff, J. L., Holland, P. V., Wu, R., and Cross, C. E. (1993) Elevated levels of serum mucin-associated antigen in adult patients with cystic fibrosis. Am. Rev. Respir. Dis. 148, 385–389.PubMedGoogle Scholar
  20. 20.
    Shih, J. Y., Yang, S. C., Yu, C. J., Wu, H. D., Liaw, Y. S., Wu, R., and Yang, P. C. (1997) Elevated serum levels of mucin-associated antigen in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 156, 1467–1472.Google Scholar
  21. 21.
    Maciag, T. S., Cerumdolo, S., Ilsley, P., Kelley, P., and Forand, P. (1979) Anendothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc. Natl. Acad. Sci. USA 76, 5674–5678.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Reen Wu
    • 1
  1. 1.University of CaliforniaDavis

Personalised recommendations