Skip to main content

Recent Insights into Drug Resistance in Ovarian Cancer

  • Protocol
Ovarian Cancer

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 39))

Abstract

Ovarian cancer, as used in this review on drug resistance, applies to the study of the problem in those malignant tumors which arise from the modified peritoneal mesothelial cells, which cover the ovarian surface. These tumors are, by far, the most common malignancies of the ovary and display a remarkable range of histological features, which generally recapitulate those of the endocervix, endometrium, or Fallopian tube to which the ovarian surface epithelium is embryologically related. Of direct relevance to the issue of chemotherapeutic responsiveness is the fact that, stage for stage, some of these tumor subtypes carry a worse prognosis. The need for chemotherapy in ovarian cancer arises because this disease produces vague symptoms that occur only after it has spread from the confines of the ovary to the surfaces of the peritoneal cavity. At this stage, surgery rarely can eliminate all apparent disease, and even in those cases, experience shows that the disease will recur with high probability. This makes it obvious that residual microscopic disease remained after surgery. Hence, the majority of ovarian cancer patients require chemotherapy and its effective use has proved a tremendous challenge as evidenced by the approximately 14,000 deaths from this disease in the United States in 1997.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozols, R., Rubin, S., Thomas, G., and Robboy, S. (1997) Epithelial ovarian cancer, in Principles and Practice of Gynecologic Ocology (Hoskins, W., Perez, C., and Young, R., eds.), 2nd edition, Lippincott, Philadelphia, PA, pp. 919ā€“986.

    Google ScholarĀ 

  2. Barry, M., Behnke, C., and Eastman, A. (1990) Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmacol. 40, 2353ā€“2362.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Algan, O., Stobbe, C., Helt, A., Hanks, G., and Chapman, J. (1996) Radiation inactivation of human prostate cancer cells: the role of apoptosis. Radiat. Res. 146, 267ā€“275.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Blommaert, F., van Kijk-Knijnenburg, H., Dijt, F., den Engelse, L., Baan, R., Berends, F., and Fichtinger-Schepman, A. (1995) Formation of DNA adducts by the anticancer drug carboplatin: different nucleotide sequence preferences in vitro and in cells. Biochemistry 34, 8474ā€“8480.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Goldstein, L. J., Galski, H., Fojo, A., Willingham, M., Lai, S. L., Gazdar, A., and Pirker, R.(1989) Expression of a multidrug resistance gene in human cancers. J. Natl. Cancer Inst. 81, 116ā€“124.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Bourhis, J., Goldstein, L. J., Riou, G., Pastan, I., Gottesman, M. M., and Benard, J. (1989) Expres-sion of a human multidrug resistance gene in ovarian carcinomas. Cancer Res. 49, 5062ā€“5065.

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Holzmayer, T. A., Hilsenbeck, S., Von Hoff, D. D., and Roninson, I. B. (1992) Clinical correlates of MDR1 (P-glycoprotein) gene expression in ovarian and small-cell lung carcinomas. J. Natl. Cancer Inst. 84, 1458ā€“1460.

    ArticleĀ  Google ScholarĀ 

  8. Kavallaris, M., Leary, J., Barrett, J., and Friedlander, M. (1996) MDR1 and multidrug resistance-associated protein (MRP) gene expression in epithelial ovarian tumors. Cancer Lett. 102, 7ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Izquierdo, M., Zee, A. v. d., Vermorken, J., Valk, P. v. d., Belien, J., Giaccone, G., et al. (1995) Drug resistance-associated marker LRP for prediction of response to chemotherapy and prognoses in advanced ovarian carcinoma. J. Natl. Cancer Inst. 87, 1230ā€“1237.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Tsuruo, T., Iida, H., Tsukagoshi, S., and Sakurai, Y. (1981) Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41, 1967ā€“1972.

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Ozols, R., Cunnion, R., Klecker Jr., R., Hamilton, T., Y, O., Parrillo, J., and Young, R. (1987) Verapamil and adriamycin in the treatment of drug resistant ovarian cancer patients. J. Clin. Oncol. 5, 641ā€“647.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Marquardt, D., McCrone, S., and Center, M. S. (1990) Mechansims of multidrug resistance in HL60 cells: detection of resistance-associated proteins with antibodies against synthetic peptides that cor-respond to the deduced sequence of P-glycoprotein. Cancer Res. 50, 1426ā€“1430.

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Cole, S., Bhardwaj, G., Gerlach, J., Mackie, J., Grant, C., Almquist, K., et al. (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258, 1650ā€“1654.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Ishikawa, T. (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci. 17, 164ā€“166.

    ArticleĀ  Google ScholarĀ 

  15. Leier, I., Jedlitschky, G., Buchholz, U., Cole, S., Deeley, R., and Keppler, D. (1994) The MPR gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J. Biol. Chem. 45, 27,807ā€“27,810.

    Google ScholarĀ 

  16. Muller, M., Meijer, C., Zaman, G., Borst, P., Scheper, R., Mulder, N., et al. (1994) Overexpression of the gene encoding the multidrug resistance-associated protein results in increased ATP-dependent glutathione S-conjugate transport. Proc. Natl. Acad. Sci. USA 91, 13,033ā€“13,037.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Twentyman, P. and Versantvoort, C. (1996) Experimental modulation of MRP (multidrug resis-tance-associated protein)-mediated resistance. Eur. J. Cancer 32A, 1002ā€“1009.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Wolpert, M. K. and Ruddon, R. W. (1969) A study on the mechanisms of resistance to nitrogen mustard (HN2) in Ehrlich ascites tumor cells: comparison of uptake of HN2-14C into sensitive and resistant cells. Cancer Res. 29, 873ā€“879.

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Redwood, W. R. and Colvin, M. (1980) Transport of melphalan by sensitive and resistant L1210 cells. Cancer Res. 40, 1144ā€“1149.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Johnson, S., Laub, P., Beesley, J., Ozols, R., and Hamilton, T. (1997) Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemothera-peutic agents in unrelated human ovarian cancer cell lines. Cancer Res. 57, 850ā€“856.

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Sharp, S. Y., Mistry, P., Valenti, M. R., Bryant, A. P., and Kelland, L. R. (1994) Selective potentia-tion of platinum drug cytotoxicity in cisplatin-sensitive and-resistant human ovarian carcinoma cell lines by amphotericin B. Cancer Chemother. Pharmacol. 35, 137ā€“143.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Ishikawa, T. and Ali-Osman, F. (1993) Glutathione-associated cis-diamminedichloro-platinum (II) metabolism and ATP-dependent efflux from leukemia cells. J. Biol. Chem. 268, 20,116ā€“20,125.

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Godwin, A., Meister, A., Oā€™Dwyer, P., Huang, C., Hamilton, T., and Anderson, M. (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase in glu-tathione synthesis. Proc. Natl. Acad. Sci. USA 89, 3070ā€“3074.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Oā€™Dwyer, P., Hamilton, T., Young, R., LaCreta, F., Carp, N., Tew, K., et al. (1992) Depletion of glutathione in normal and malignant human cells in vivo by buthionine sulfoximine: clinical and biochemical results. J. Natl. Cancer Inst. 84, 264ā€“267.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  25. Hamilton, T., Winker, M., Louie, K., Batist, G., Behrens, B., Tsuruo, T., et al. (1985) Augmentation of adriamycin, melphalan and cisplatin cytotoxicity in drug-resistant and-sensitive human ovarian cancer cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem. Pharmacol. 34, 2583ā€“2586.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Andrews, P. A., Murphy, M. P., and Howell, S. B. (1985) Differential potentiation of alkylating and platinating agent cytotoxicity in human ovarian carcinoma cells by glutathione depletion. Cancer Res. 45, 6250ā€“6253.

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Nakagawa, K., Saijo, N., Tsuchida, S., Sakai, M., Tsunokawa, Y., Yokota, J., et al. (1990) Glu-tathione S-transferase p as a determinant of drug resistance in transfectant cell lines. J. Biol. Chem. 265, 4296ā€“4301.

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Ban, N., Takahashi, Y., Takayama, T., Kura, T., Katahira, T., Sakamaki, S., and Niitsu, Y. (1996) Transfection of glutathione S-transferase (GST)-p antisense complementary DNA increases the sen-sitivity of a colon cancer cell line to adriamycin, cisplatin, melphalan, and etoposide. Cancer Res. 56, 3577ā€“3582.

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Ghazal-Aswad, S., Hogarth, L., Hall, A. G., George, M., Sinha, D. P., Lind, M., et al. (1996) The relationship between tumor glutathione concentration, glutathione S-transferase isoenzyme expression and response to single agent carboplatin in epithelial ovarian cancer patients. Br. J. Cancer 74, 468ā€“473.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Wrigley, E. C., McGown, A. T., Buckley, H., Hall, A., and Crowther, D. (1996) Glutathione-S-transferase activity and isoenzyme levels measured by two methods in ovarian cancer, and their value as markers of disease outcome. Br. J. Cancer 73, 763ā€“769.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Tanner, B., Hengstler, J. G., Dietrich, B., Henrich, M., Steinberg, P., Weikel, W., et al. (1997) Glutathione, glutathione S-transferase a and p, and aldehyde dehydrogenase content in relationship to drug resistance in ovarian cancer. Gynecol. Oncol. 65, 54ā€“62.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Ferrandina, G., Scambia, G., Damia, G., Tagliabue, G., Fagotti, A., Benedetti Panici, P., et al. (1997) Glutathione S-transferase activity in epithelial ovarian cancer: association with response to chemo-therapy and disease outcome. Annals Oncol. 8, 343ā€“350.

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Codegoni, A. M., Broggini, M., Pitelli, M. R., Pantarotto, M., Torri, V., Mangioni, C., and Dā€™Incalci, M. (1997) Expression of genes of potential importance in the response to chemotherapy and DNA repair in patients with ovarian cancer. Gynecol. Oncol. 65, 130ā€“137.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Kelley, S., Basu, A., Teicher, B., Hacker, M., Hamer, D., and Lazo, J. (1988) Overexpression of metallothionein confers resistance to anticancer drugs. Science 241, 1813ā€“1815.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Kondo, Y., Woo, E. S., Michalska, A. E., Choo, K. H. A., and Lazo, J. S. (1995) Metallothionein null cells have increased sensitivity to anticancer drugs. Cancer Res. 55, 2021ā€“2023.

    CASĀ  PubMedĀ  Google ScholarĀ 

  36. Kasahara, K., Fujiwara, Y., Nishio, K., Ohmori, T., Sugimoto, Y., Komiya, K., et al. (1991) Metallothionein content correlates with the sensitivity of human small cell lung cancer cell lines to cisplatin. Cancer Res. 51, 3237ā€“3242.

    CASĀ  PubMedĀ  Google ScholarĀ 

  37. Schilder, R., Hall, L., Monks, A., Handel, L., Fornace, A., Ozols, R., et al. (1990) Metallothionein gene expression and resistance to cisplatin in human ovarian cancer. Int. J. Cancer 45, 416ā€“422.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Robson, T., Hall, A., and Lohrer, H. (1992) Increased sensitivity of a Chinese hamster ovary cell line to alkylating agents after overexpression of the human metallothionein II-A gene. Mutat. Res. 274, 177ā€“185.

    CASĀ  PubMedĀ  Google ScholarĀ 

  39. Germain, I., Tetu, B., Brisson, J., Mondor, M., and Cherian, M. G. (1996) Markers of chemoresis-tance in ovarian carcinomas: an immunohistochemical study of 86 cases. Int. J. Gynecol. Path. 15, 54ā€“62.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Giannakakou, P., Sackett, D. L., Kang, Y.-K., Zhan, Z., Buters, J. T. M., Fojo, T., and Poruchynsky, M. S. (1997) Paclitaxel-resistant human ovarian cancer cells have mutant b-tubulins that exhibit impaired paclitaxel-driven polymerization. J. Biol. Chem. 272, 17,118ā€“17,125.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Scheper, R., Broxterman, H., Scheffer, G., Kaaijk, P., Dalton, W., van Heijningen, T., et al. (1993) Overexpression of a Mr 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resis-tance. Cancer Res. 53, 1475ā€“1479.

    CASĀ  PubMedĀ  Google ScholarĀ 

  42. Chugani, D., Rome, L., and Kedersha, N. (1993) Evidence that vault ribonucleoprotein particles localize to the nuclear pore complex. J. Cell Sci. 106, 23ā€“29.

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Izquierdo, M., Scheffer, G., Flens, M., Giaccone, G., Broxterman, H., Meijer, C., et al. (1996) Broad distribution of the multidrug resistance-related vault lung resistance protein in nomal human tissues and tumors. Am. J. Pathol., 877ā€“887.

    Google ScholarĀ 

  44. Moggs, J., Yarema, K., Essigmann, J., and Wood, R. (1996) Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct. J. Biol. Chem. 271, 7177ā€“7186.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Cole, R. (1973) Repair of DNA containing interstrand crosslinks in Escherichia coli: sequential excision and recombination. Proc. Natl. Acad. Sci. USA 70, 1064ā€“1068.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Sargent, R., Rolig, R., Kilburn, A., Adair, G., Wilson, J., and Nairn, R. (1997) Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1. Proc. Natl. Acad. Sci. USA 94, 13,122ā€“13,127.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Tantin, D., Kansal, A., and Carey, M. (1997) Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol. Cell Biol. 17, 6803ā€“6814.

    CASĀ  PubMedĀ  Google ScholarĀ 

  48. Koberle, B., Grimaldi, K., Sunters, A., Hartley, J., Kelland, L., and Masters, J. (1997) DNA repair capacity and cisplatin sensitivity of human testis tumor cells. Int. J. Cancer 70, 551ā€“555.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Zeng-Rong, N., Paterson, J., Alpert, L., Tsao, M.-S., Viallet, J., and Alaoui-Jamali, M. (1995) Elevated DNA repair capacity is associated with intrinsic resistance of lung cancer to chemotherapy. Cancer Res. 55, 4760ā€“4764.

    CASĀ  PubMedĀ  Google ScholarĀ 

  50. Johnson, S. W., Swiggard, P. A., Handel, L. M., Brennan, J. M., Godwin, A. K., Ozols, R. F., and Hamilton, T. C. (1994) Relationship between platinum-DNA adduct formation, removal, and cyto-toxicity in cisplatin sensitive and resistant human ovarian cancer cells. Cancer Res. 54, 5911ā€“5916.

    CASĀ  PubMedĀ  Google ScholarĀ 

  51. Johnson, S., Perez, R., Godwin, A., Yeung, A., Handel, L., Ozols, R., and Hamilton, T. (1994) Role of platinum-DNA adduct formation and removal in cisplatin resistance in human ovarian cancer cell lines. Biochem. Pharmacol. 47, 689ā€“697.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Yen, L., Woo, A., Christopoulopoulos, G., Batist, G., Panasci, L., Roy, R., et al. (1995) Enhanced host cell reactivation capacity and expression of DNA repair genes in human breast cancer cells resistant to bi-functional alkylating agents. Mutat. Res. 337, 179ā€“189.

    CASĀ  PubMedĀ  Google ScholarĀ 

  53. Ali-Osman, F., Berger, M., Rairkar, A., and Stein, D. (1994) Enhanced repair of a cisplatin-damaged reporter chloramphenicol-O-acetyltransferase gene and altered activities of DNA poly-merases a and b, and DNA ligase in cells of a human malignant glioma following in vivo cisplatin therapy. J. Cell. Biochem. 54, 11ā€“19.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Eastman, A. and Schulte, N. (1988) Enhanced DNA Repair as a Mechanism of Resistance to cis-diamminedichloroplatinum(II). Biochemistry 27, 4730ā€“4734.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Chaney, S. and Sancar, A. (1996) DNA Repair: enzymatic mechanisms and relevance to drug response. J. Natl. Cancer Inst. 88, 1346ā€“1360.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Dabholkar, M., Vionnet, J., Bostick-Bruton, F., Yu, J., and Reed, E. (1994) Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemo-therapy. J. Clin. Invest. 94, 703ā€“708.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Cleaver, J., Charles, W., McDowell, M., Sadinski, W., and Mitchell, D. (1995) Overexpression of the XP A repair gene increases resistance to ultraviolet radiation in human cells by selective repair of DNA damage. Cancer Res. 55, 6152ā€“6160.

    CASĀ  PubMedĀ  Google ScholarĀ 

  58. Huang, J.-C., Zamble, D., Reardon, J., Lippard, S., and Sancar, A. (1994) HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc. Natl. Acad. Sci. USA 91, 10,394ā€“10,398.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. McAā€™Nulty, M. and Lippard, S. (1996) The HMG-domain protein Ixr1 blocks excision repair of cisplatin-DNA adducts in yeast. Mutat. Res. 362, 75ā€“86.

    Google ScholarĀ 

  60. Vichi, P., Coin, F., Renaud, J., Vermeulen, W., Hoeijmakers, J., Moras, D., and Egly, J. (1997) Cisplatin-and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J. 16, 7444ā€“7456.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Katz, E., Andrews, P., and Howell, S. (1990) The effect of DNA polymerase inhibitors on the cyto-toxicity of cisplatin in human ovarian carcinoma cells. Cancer Comm. 2, 159ā€“164.

    CASĀ  Google ScholarĀ 

  62. Dempke, W. C. M., Shellard, S. A., Fichtinger-Schepman, A. M. J., and Hill, B. T. (1991) Lack of significant modulation of the formation and removal of platinum-DNA adducts by aphidicolin glycinate in two logarithmically-growing ovarian tumor cell lines in vitro. Carcinogenesis 12, 525ā€“528.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  63. Oā€™Dwyer, P., Moyer, J., Suffness, M., Harrison, S., Cysyk, R., Hamilton, T., and Plowman, J. (1994) Antitumor activity and biochemical effects of aphidicolin glycinate (NSC 303812) alone and in combination with cisplatin in vivo. Cancer Res. 54, 724ā€“729.

    PubMedĀ  Google ScholarĀ 

  64. Albain, K., Swinnen, L., Erickson, L., Stiff, P., Fisher, S., and Fisher, R. (1992) Cytotoxic synergy of cisplatin with concurrent hydroxyurea and cytarabine: summary of an in vitro model and initial clinical pilot experience. Semin. Oncol. 19, 102ā€“109.

    CASĀ  PubMedĀ  Google ScholarĀ 

  65. Alaoui-Jamali, M., Loubaba, B.-B., Robyn, S., Tapiero, H., and Batist, G. (1994) Effect of DNA-repair-enzyme modulators on cytotoxicity of L-phenylalanine mustard and cis-diamminedichloroplatinum (II) in mammary carcinoma cells resistant to alkylating agents. Cancer Chemother. Pharmacol. 34, 153ā€“158.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Aebi, S., Kurdi-Haidar, B., Gordon, R., Cenni, B., Zheng, H., Fink, D., et al. (1996) Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res. 56, 3087ā€“3090.

    CASĀ  PubMedĀ  Google ScholarĀ 

  67. Fink, D., Nebel, S., Aebi, S., Zheng, H., Cenni, B., Nehme, A., et al. (1996) The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 56, 4881ā€“4886.

    CASĀ  PubMedĀ  Google ScholarĀ 

  68. Fink, D., Zheng, H., Nebel, S., Norris, P., Aebi, S., Lin, T.-P., et al. (1997) In vitro and in vivoresistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res. 57, 1841ā€“1845.

    CASĀ  PubMedĀ  Google ScholarĀ 

  69. Duckett, D., Drummond, J., Murchie, A., Reardon, J., Sancar, A., Lilley, D., and Modrich, P. (1996) Human MutSa recognizes damaged DNA base pairs containing 06-methylguanine, O4-methylthymine, or the cisplatin-d(GpG)adduct. Proc. Natl. Acad. Sci. USA 93, 6443ā€“6447.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Karran, P. and Bignami, M. (1994) DNA damage tolerance, mismatch repair and genome instability. BioEssays 16, 833ā€“839.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Mamenta, E., Poma, E., Kaufmann, W., Delmastro, D., Grady, H., and Chaney, S. (1994) Enhanced replicative bypass of platinum-DNA adducts in cisplatin-resistant human ovarian carcinoma cell lines. Cancer Res. 54, 3500ā€“3505.

    CASĀ  PubMedĀ  Google ScholarĀ 

  72. Henkels, K. and Turchi, J. (1997) Induction of apoptosis in cisplatin-sensitive and-resistant human ovarian cancer cell lines. Cancer Res. 57, 4488ā€“4492.

    CASĀ  PubMedĀ  Google ScholarĀ 

  73. Vaisman, A., Varchenko, M., Said, I., and Chaney, S. (1997) Cell cycle changes associated with formation of Pt-DNA adducts in human ovarian carcinoma cells with different cisplatin sensitivity. Cytometry 27, 54ā€“64.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Demarcq, C., Bunch, R., Creswell, D., and Eastman, A. (1994) The role of cell cycle progresson in cisplatin-induced apoptosis in chinese hamster ovary cells. Cell Growth Differ. 5, 983ā€“993.

    CASĀ  PubMedĀ  Google ScholarĀ 

  75. El-Deiry, W., Tokino, T., Velculescu, V., Levy, D., Parsons, R., Trent, J., et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817ā€“825.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. McDonald, E. I., Wu, G., Waldman, T., and El-Deiry, W. (1996) Repair defect in p21 WAF1/CIP1-/-human cancer cells. Cancer Res. 56, 2250ā€“2255.

    CASĀ  PubMedĀ  Google ScholarĀ 

  77. Chen, I., Smith, M., Oā€™Connor, P., and Fornace, A. J. (1995) Direct interaction of Gadd45 with PCNA and evidence for competitive interaction of Gadd45 and p21Waf1/Cip1 with PCNA. Oncogene 11, 1931ā€“1937.

    CASĀ  PubMedĀ  Google ScholarĀ 

  78. Fan, S., Smith, M. L., Rivet, D. J. I., Duba, D., Zhan, Q., Kohn, K. W., et al. (1995) Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res. 55, 1649ā€“1654.

    CASĀ  PubMedĀ  Google ScholarĀ 

  79. Eliopoulos, A., Kerr, D., Herod, J., Hodgkins, L., Krajewski, S., Reed, J., and Young, L. (1995) The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene 11, 1217ā€“1228.

    CASĀ  PubMedĀ  Google ScholarĀ 

  80. Blagosklonny, M. and Eldeiry, W. (1998) Acute overexpression of WT p53 facilitates anticancer drug-induced death of cancer and normal cells. Int. J. Cancer 75, 933ā€“940.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  81. Bunch, R. and Eastman, A. (1997) 7-Hydroxystaurosporine (UCN-01) causes redistribution of pro-liferating cell nuclear antigen and abrogates cisplatin-induced S-phase arrest in Chinese hamster ovary cells. Cell Growth Differ. 8, 779ā€“788.

    CASĀ  PubMedĀ  Google ScholarĀ 

  82. Miyashita, T. and Reed, J. C. (1993) Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81, 151ā€“157.

    CASĀ  PubMedĀ  Google ScholarĀ 

  83. Zou, H., Henzel, W., Liu, X., Lutschg, A., and Wang, X. (1997) Apaf-1, a human protein homolgous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405ā€“413.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  84. Hirsch, T., Marchetti, P., Susin, S., Dallaporta, B., Zamzami, N., Marzo, I., et al. (1997) The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 15, 1573ā€“1581.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Hamilton, T.C., Johnson, S.W. (2000). Recent Insights into Drug Resistance in Ovarian Cancer. In: Bartlett, J.M.S. (eds) Ovarian Cancer. Methods in Molecular Medicineā„¢, vol 39. Humana Press. https://doi.org/10.1385/1-59259-071-3:89

Download citation

  • DOI: https://doi.org/10.1385/1-59259-071-3:89

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-583-6

  • Online ISBN: 978-1-59259-071-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics