Skip to main content

Alterations in Oncogenes, Tumor Suppressor Genes, and Growth Factors Associated with Epithelial Ovarian Cancers

  • Protocol
Ovarian Cancer

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 39))

Abstract

More than 90% of epithelial ovarian cancers are clonal neoplasms that arise from the progeny of a single cell (1-3). Comparison of primary and metastatic sites from the same patient has detected similar patterns of loss of heterozygosity (LOH) on different chromosomes, inactivation of the same X chromosome, and identical mutations in the p53 gene in primary and secondary tumors. Given the clonality of most ovarian cancers, multiple genetic alterations must occur in the progeny of a single cell to permit progression from a normal epithelial phenotype to that of a malignant cell capable of uncontrolled proliferation, invasion, and metastasis. Approximately 10% of ovarian cancers are familial and have been associated with germ-line mutations in BRCA1, BRCA2, mismatch repair genes, or p53 (detailed in Subheading 2.2.). Somatic mutations have been found in sporadic ovarian cancers that activate oncogenes or that result in loss of tumor suppressor gene function. Different ovarian cancers can also exhibit aberrant autocrine and/or paracrine growth regulation with alteration in the expression of growth factors and their receptors. No single abnormality has been detected in all ovarian cancers and most of the alterations are observed in cancers that arise at other sites. Certain changes in oncogenes, tumor suppressor genes, growth factors, and their receptors occur in a significant fraction of epithelial ovarian cancers, whereas others are uncommon. Consequently, progress has been made in defining the spectrum and profile of genetic and epigenetic changes that occur during transformation of the ovarian epithelium. A better understanding of the genotypic and phenotypic alterations that are associated with different epithelial ovarian cancers may impact on more effective management of the disease through chemoprevention, early detection, precise prognostication, treatment directed toward molecular targets, and individualization of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobs, I. J., Kohler, M. F., Wiseman, R., et al. (1992) Clonal origin of epithelial ovarian cancer: Analysis by loss of heterozygosity, p53 mutation and X chromosome inactivation. J. Natl. Cancer Ins. 84, 1793ā€“1798.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Mok, C. H., Tsao, W. W., Knapp, R. C., et al. (1992) Unifocal origin of advanced human epithelial ovarian cancer. Cancer Res. 52, 5119ā€“5122.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Li, S., Han H., Resnik, E., et al. (1993) Advanced ovarian carcinoma: molecular evidence of unifocal origin. Gyn. Onc. 51, 21ā€“25.

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Bast, R. C. Jr. and Mills, G. B. The molecular pathogenesis of ovarian cancer, in The Molecular Basis of Cancer, 2nd ed., Mendelsohn, J., Howley, P., Israel, M., and Liotta, L., in press.

    Google ScholarĀ 

  5. Kim, T. M., Benedict, W. F., Xu, H. J., et al. (1994) Loss of heterozygosity on chromosome 13 is common only in the biologically more aggressive subtypes of ovarian epithelial tumors and is associated with normal retinoblastoma gene expression. Cancer Res. 54, 605ā€“609.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Dodson, M. K., Cliby, W. A., Xu, H. J., et al. (1994) Evidence of functional RB protein in epithelial ovarian carcinomas despite loss of heterozygosity at the RB locus. Cancer Res. 54, 610ā€“613.

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Dong, Y., Walsh, M. D., McGuckin, M. A., et al. (1997) Reduced expression of retinoblastoma gene product (pRB) and high expression of p53 are associated with poor prognosis in ovarian cancer. Int. J. Cancer 74, 407ā€“415.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Marks, J. R., Davidoff, A. M., Kerns, B. J. M., et al. (1991) Overexpression and mutation of p53 in epithelial ovarian cancer. Cancer Res. 51, 2979ā€“2984.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Hutson, R., Ramsdale, J., and Wells, M. (1995) p53 protein expression in putative precursor lesions of epithelial ovarian cancer. Histopathol. 27, 367ā€“371.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Kohler, M. F., Marks, J. R., Wiseman, R. W., et al. (1993) Spectrum of mutation and frequency of allelic deletion of the p53 gene in ovarian cancer. J. Natl. Cancer Inst. 85, 1513ā€“1519.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Schildkraut, J., Bastos, E., and Berchuck, A. (1997) Relationship between lifetime ovulatory cycles and overexpression of mutant p53 in epithelial ovarian cancer. J. Nat. Cancer Inst. 89, 932ā€“938.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Henriksen, R., Strang, P., Wilander, E., Backstrom, T., Tribukait, B., and Oberg, K. (1994) p 53 expression in epithelial ovarian neoplasms: relationship to clinical and pathological parameters, Ki-67 expression and flow cytometry, Gynecol. Oncol. 53, 301ā€“306.

    CASĀ  Google ScholarĀ 

  13. Righetti, S. C., Della Torre, G., Pilotti, S., et al. (1996) A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res. 56, 689ā€“693.

    CASĀ  PubMedĀ  Google ScholarĀ 

  14. Mujoo, K., Maneval, D. C., Anderson, S. C., and Gutterman, J. U. (1996) Adenoviral-mediated p53 tumor suppressor gene therapy of human ovarian carcinoma. Oncogene 12, 1617ā€“1623.

    CASĀ  PubMedĀ  Google ScholarĀ 

  15. Mok, S. C., Chan, W. Y., Wong, K. K., et al. (1996) SPARC, an extracellular matrix protein with tumor-suppressing activity in human ovarian epithelial cells. Oncogene 12, 1895ā€“1901.

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. Mok, S. C., Wong, K. K., Chan, R. K., et al. (1994) Molecular cloning of differentially expressed genes in human epithelial ovarian cancer. Gynecol. Oncol. 52, 247ā€“252.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Patton, S. E., Martin, M. L., Nelson, L. L., et al. (1998) Activation of the Ras-MAP pathway and phosphorylation of ets-2 at position threonine 72 in human ovarian cancer cell lines. Cancer Res. 58, 2253ā€“2259.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Yu, Y., Xu, F., Fang, X., Zhao, S., Li, Y., Cuevas, B., et al. (1999) NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc. Nat. Acad. Sci. USA 96, 214ā€“219.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Steck, P. A., Pershouse, M. A., Jasser, S. A. et al. (1997) Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Gen. 15, 356ā€“362.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Abdollahi, A., Godwin, A. K., Miller, P. D., et al. (1997) Indentification of a gene containing zinc finger motifs based on lost expression in malignantly transformed rat ovarian surface epithelial cells. Cancer Res. 57, 2029ā€“2034.

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Schultz, D. C., Vandeweer, L., Berman, D. B., et al. (1996) Identification of two candidate tumor suppressor genes on chromosome 17p13.3. Cancer Res. 56, 1997ā€“2002.

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Slamon, D. J., Godolphin, W., Jones, L. A., et al. (1989) Studies of the HER-2/neu protooncogene in human breast and ovarian cancer. Science 244, 707ā€“712.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. erchuck, A., Kamel, A., Whitaker, R., et al. (1990) Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 50, 4087ā€“4091.

    Google ScholarĀ 

  24. u, F. J., Yu, Y. H., Boyer, C. M., et al. (1996) Stimulation or inhibition of ovarian cancer cell proliferation by heregulin is dependent on the ratio of HER2 to HER3 or HER4 expression. Proc. Amer. Assoc. Cancer Res. 37, 191 (A#1305).

    Google ScholarĀ 

  25. Xu, F. J., Stack, S., Boyer, C., et al. (1997) Heregulin and agonistic anti-p185c-erbB2 antibodies inhibit proliferation but increase invasiveness of breast cancer cells that overexpress p185c-erbB2: Increased invasiveness may contribute to poor prognosis. Clin. Cancer Res. 3, 1629ā€“1634.

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Yu, D., Wu, B., Jing, T., et al. (1998) Overexpression of both p185 c-erbB2 and p170 MDR render breast cancer cells highly resistant to taxol. Oncogene 16, 2087ā€“2094.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Yu, D., Matin, A., and Xia, W. (1995) Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu. Oncogene 11, 1383ā€“1388.

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Ueno, N. T., Hung, M. C., and Zhang, S. (1998) Phase I E1 A gene therapy in patents with advanced breast and ovarian cancers. Proc. Amer. Soc. Clin. Oncol. 17, 432a (A#1663).

    Google ScholarĀ 

  29. Xu, F. J., Lupu, R., Rodriguez, G., et al. (1993) Antibody induced growth inhibition is mediated through immunochemically and functionally distinct epitopes on the extracellular domain of c-erbB-2 (HER-2/neu). Int. J. Cancer 53, 401ā€“408.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Boente, M. P., Berchuck, A., Whitaker, R. S., KalĆ©n, A., Xu, F. J., Clarke-Pearson, D. L., et al. (1998) Suppression of diacylglycerol levels by antibodies reactive with the c-erbB-2 (HER-2/neu) gene product p185erbB-2 in breast and ovarian cancer cell lines. Gynecol. Oncol. 70, 49ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Bae, D. S., Xu, F-J., Mills, G., and Bast, R. C. Jr. (1995) Heregulin and antibodies against p185c-erbB-2 (p185) activate distinct signaling pathways. Proc. Amer. Assoc. Cancer Res. 36, 55 (A#328).

    Google ScholarĀ 

  32. Le, L., Vadlamudi, R., McWatters, A., Kumar, R., and Bast, R. C. Contrasting effects of heregulin and a tumor-inhibitory monoclonal antibody to HER-2 receptor on mitogen-activated protein kinases and phosphoinositide-3-kinase pathways. Proc. Amer. Assoc. Cancer Res., in press.

    Google ScholarĀ 

  33. Adam, L., Vadlamudi, R., Kandapaka, S. B., Chernoff, J., Mendelsohn, J., and Kumar, R. (1998) Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidyl-inositol-3 kinase. J. Biol. Chem. 273, 28,238ā€“28,246.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Baselga, J., Tripathy, D., Mendelsohn, J., et al. (1996) Phase II study of weekly intravenous recom-binant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Onc. 14, 737ā€“744.

    CASĀ  Google ScholarĀ 

  35. Baselga, J., Norton, L., Albanell, J., et al. (1998) Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res. 58, 2825ā€“2831.

    CASĀ  PubMedĀ  Google ScholarĀ 

  36. Slamon, D., Leyland-Jones, B., Shak, S., et al. (1998) Addition of herceptin (humanized anti-HER2 antibody) to first line chemotherapy for HER2 overexpressing metastatic breast cancer markedly increases anticancer activity: A randomized multinational controlled phase II trial. Proc. Amer. Soc. Clin. Oncol. 17, 98 (A#377).

    Google ScholarĀ 

  37. McKenzie, S. J., DeSombre, K. A., Bast, B. S., Hollis, D. R., Whitaker, R. S., Berchuck, A., et al. (1993) Serum levels of HER-2/neu (c-erbB-2) correlate with overexpression of p185neu in human ovarian cancer. Cancer 71, 3942ā€“3946.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Berchuck, A., Rodriguez, G. C., Kamel, A., et al. (1991) Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. I. Correlation of receptor expression with prognostic factors in patients with ovarian cancer. Amer. J. Ob. Gynecol. 164, 669ā€“674.

    CASĀ  Google ScholarĀ 

  39. Huang, H. J. S., Nagane, M., Klingbiel, C. K., et al. (1997) The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J. Bio. Chem. 272, 2927ā€“2935.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Ilekis, J. V., Gariti, J., Niederberger, C., et al. (1997) Expression of a truncated epidermal growth factor receptor-like protein (TEGFR) in ovarian cancer. Gynecol. Oncol. 65, 36ā€“41.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Lidor, Y. J., Xu, F. J., Martinez-Maza, O., et al. (1993) Constitutive production of macrophage colony stimulating factor and interleukin-6 by human ovarian surface epithelial cells. Exp. Cell Res. 207, 332ā€“339.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Xu, F. J., Ramakrishnan, S., Daly, L., Soper, J. T., Berchuck, A., Clarke-Pearson, D., et al. (1991) Increased serum levels of macrophage colony-stimulating factor in ovarian cancer. Amer. J. Obstet. Gynecol. 165, 1356ā€“1362.

    CASĀ  Google ScholarĀ 

  43. Kacinski, B. M., Carter, D., Mittal, K., et al. (1990) Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Amer. J. Path. 137, 135ā€“147.

    CASĀ  PubMedĀ  Google ScholarĀ 

  44. Wiener, J., Nakano, K., Kruzelock, R. P., Bucana, C. D., Bast, R. C., Jr., and Gallick, G. E. Reduction of c-src kinase activity abrogates malignant human ovarian cancer tumor growth in a xenograft mouse model. Submitted for publication.

    Google ScholarĀ 

  45. Budde, R. J., Ke, S., and Levin, V. A. (1994) Activity of pp60c-src in 60 different cell lines derived from human tumors. Cancer Biochem. Biophys. 14, 171ā€“175.

    CASĀ  PubMedĀ  Google ScholarĀ 

  46. Shayesteh, L., Lu, Y., Ku, W. L., et al. (1999) P1K3CA is implicated as an oncogene in ovarian cancer. Nature Genetics 21, 99ā€“102.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Bellacosa, A., de Feo, D., Godwin, A. K., et al. (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer 64, 280ā€“285.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. nomoto, T., Inoue, M., Perantoni, A. O., et al. (1990) K-ras activation in neoplasms of the human female reproductive tract. Cancer Res. 50, 6139ā€“6145.

    Google ScholarĀ 

  49. Mok, S. C., Bell, D. A., Knapp, R. C., et al. (1993) Mutation of K-ras protooncogene in human ovarian epithelial tumors of borderline malignancy. Cancer Res. 53, 1489ā€“1492.

    CASĀ  PubMedĀ  Google ScholarĀ 

  50. Baker, V. V., Borst, M. P., Dixon, D., et al. (1990) c-myc amplification in ovarian cancer. Gynecol. Onc. 38, 340ā€“342.

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Stromberg, K., Johnson, G. R., Oā€™Connor, D. M., et al. (1994) Frequent immunohistochemical detection of EGF supergene family members in ovarian carcinogenesis. Int. J. Gynecol. Pathol. 13, 342ā€“347.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Stromberg, K., Collins, T. J., Gordon, A. W., et al. (1992) Transforming growth factor-alpha acts as an autocrine growth factor in ovarian cancer cell lines. Cancer Res. 52, 341ā€“347.

    CASĀ  PubMedĀ  Google ScholarĀ 

  53. Ottensmeier, C., Swanson, L., Strobel, T., et al. (1996) Absence of constitutive EGF receptor activa-tion in ovarian cancer cell lines. Brit. J. Cancer 74, 446ā€“452.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Chambers, S. K., Ivins, C. M., and Carcangiu, M. L. (1997) Expression of plasminogen activator inhibitor-2 in epithelial ovarian cancer: a favorable prognostic factor related to the actions of CSF-1. Int. J. Cancer 74, 571ā€“575.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Xu, Y., Gaudette, D. C., Boynton, J., et al. (1994) Characterization of an ovarian cancer activating factor (OCAF) in ascites from ovarian cancer patients. Clin. Cancer Res. 1, 1223ā€“1232.

    Google ScholarĀ 

  56. Havrilesky, L. J., Hurteau, J. A., Whitaker, R. S., et al. (1995) Regulation of apoptosis in normal and malignant ovarian epithelial cells by transforming growth factor beta. Cancer Res. 55, 944ā€“948.

    CASĀ  PubMedĀ  Google ScholarĀ 

  57. Henriksen, R., Gobl, A., Wilander, E., et al. (1995) Expression and prognostic significance of TGF-beta isotypes, latent TGF-beta 1 binding protein, TGF-beta type I and type II receptors, and endoglin in normal ovary and ovarian neoplasms. Lab. Invest. 73, 213ā€“220.

    CASĀ  PubMedĀ  Google ScholarĀ 

  58. Hurteau, J., Rodriguez, G. C., Whitaker, R. S., et al. (1994) Transforming growth factor-beta inhibits proliferation of human ovarian cancer cells obtained from ascites. Cancer 74, 93ā€“99.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Berchuck, A., Rodriguez, G., Olt, G. J., et al. (1992) Regulation of growth of normal ovarianepithelial cells and ovarian cancer cell lines by transforming growth factor-Ī². Amer. J. Ob. Gynecol. 166, 676ā€“684.

    CASĀ  Google ScholarĀ 

  60. Baldwin, R. L., Yamada, D., Bristow, R. E., Chen, L-M., and Karlan, B. Y. (1998) Ovarian epithelial growth regulation, in Ovarian Cancer 5, Sharp, F., Blackett, T., Berek, J., Bast, R., eds. Isis Medical Media, Oxford, U.K. pp. 99ā€“107.

    Google ScholarĀ 

  61. Lafon, C., Mathieu, C., Guerrin, M., et al. (1996) Transforming growth factor beta 1-induced apoptosis in human ovarian carcinoma cells: protection by the antioxidant N-acetylcysteine and bcl-2. Cell Growth Differ. 7, 1095ā€“1104.

    CASĀ  PubMedĀ  Google ScholarĀ 

  62. Rodriguez, G. C., Berchuck, A., Whitaker, R., et al. (1994) Regulation of invasion in ovarian cancer cell lines by transforming growth factor-beta. 26th Annu. Meeting Soc. Gynecol. Oncol. 40.

    Google ScholarĀ 

  63. Lee, M. M., Donahoe, P. K., Hasegawa, T., et al. (1996) Mullerian inhibiting substance in humans: normal levels from infancy to adulthood. J. Clin. Endo. Metabol. 81, 571ā€“576.

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Fuller, A. F., Jr., Guy, S., Budzik, G. P., and Donahoe, P. K. (1982) Mullerian inhibiting substance inhibits colony growth of a human ovarian carcinoma cell line. J. Clin. Endo. Metabol. 54, 1051ā€“1055.

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. Wu, S., Boyer, C. M., Whitaker, R. S., et al. (1993) Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Res. 53, 1939ā€“1944.

    CASĀ  PubMedĀ  Google ScholarĀ 

  66. Mutch, D. G., Powell, C. B., Kao, M. S., et al. (1992) Resistance to cytolysis by tumor necrosis factor alpha in malignant gynecological cell lines is associated with the expression of protein(s) that prevent the activation of phospholipase A2 by tumor necrosis factor alpha. Cancer Res. 52, 866ā€“872.

    CASĀ  PubMedĀ  Google ScholarĀ 

  67. Wu, S., Xu, F. J., Boyer, C. M., and Bast, R. C., Jr. (1994) Proliferation and induction of NF-kappa B by tumor necrosis factor-a can be mediated through two distinct receptors in human ovarian cancer cells. Proc. Amer. Assoc. Cancer Res. 35, 486 (A#2899).

    Google ScholarĀ 

  68. Takeyama, H., Wakamiya, N., Oā€™Hara, C., et al. (1991) Tumor necrosis factor expression by human ovarian carcinoma in vivo. Cancer Res. 51, 4476ā€“4480.

    CASĀ  PubMedĀ  Google ScholarĀ 

  69. Boyer, C. M., Wu, S., Xu, F-J., et al. (1995) Stimulation of human ovarian cancer cell growth in vivo with TNFa or IL-1 in immunodeficient scid mice. Proc. Amer. Assoc. Cancer Res. 36, 71(A#422).

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Bast, R.C., Mills, G.B. (2000). Alterations in Oncogenes, Tumor Suppressor Genes, and Growth Factors Associated with Epithelial Ovarian Cancers. In: Bartlett, J.M.S. (eds) Ovarian Cancer. Methods in Molecular Medicineā„¢, vol 39. Humana Press. https://doi.org/10.1385/1-59259-071-3:37

Download citation

  • DOI: https://doi.org/10.1385/1-59259-071-3:37

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-583-6

  • Online ISBN: 978-1-59259-071-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics