Use of the Fibroblast Model in the Study of Cellular Senescence

  • Vincent J. Cristofalo
  • Craig Volker
  • Robert G. Allen
Part of the Methods in Molecular Medicine book series (MIMM, volume 38)

Abstract

In this chapter, we present standard procedures for the culture of human cells that exhibit a finite proliferative capacity (replicative life-span). The use of a cell culture model has the advantage of providing a controlled environment to study a wide variety of cellular phenomena. It also has the inherent limitation of isolating cells from the regulatory elements that might be provided by other types of cells in vivo. Nevertheless, cell culture models have been crucial to our current understanding of mechanisms of growth, differentiation, development, and neoplasia and numerous other disease states. In this chapter we present procedures for human fibroblast culture including serumfree cultivation of cells, which is necessary when the cellular environment must be fully defined. In addition, we present procedures for the determination of replicative life-span, saturation density, and assessment of replicative capacity from labeled thymidine incorporation in fibroblasts. The methods described here have been well tested and provide highly reproducible results (1, 2).

Keywords

Filtration Glutamine Trypsin Dexamethasone HEPES 

References

  1. 1.
    Cristofalo, V. J. and Charpentier, R. (1980) A standard procedure for cultivating human diploid fibroblastlike cells to study cellular aging. J. Tissue Cult. Methods 6, 117–121.CrossRefGoogle Scholar
  2. 2.
    Phillips, P. D. and Cristofalo, V. J. (1989) Cell culture of human diploid fibroblasts in serum-containing and serum-free media, in Cell Growth and Division: A Practical Approach (Baserga, R., ed.), IRL, Washington, DC, 121–132.Google Scholar
  3. 3.
    Swim, H. E. and Parker, R. F. (1957) Culture characteristics of human fibroblasts propagated serially. Am. J. Hyg. 66, 235–243.PubMedGoogle Scholar
  4. 4.
    Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.CrossRefGoogle Scholar
  5. 5.
    Cristofalo, V. J. and Pignolo, R. J. (1993) Replicative senesence of human fibroblast-like cells in culture. Physiol. Rev. 73, 617–638.PubMedGoogle Scholar
  6. 6.
    Ponten, J. (1973) Aging properties of glia, in INSERM (Bourliere, F., Courtois, Y., Macieira-Coelho, A., and Robert, L., eds.), INSERM, Paris, pp. 53–64.Google Scholar
  7. 7.
    Rheinwald, J. G. and Green, H. (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–343.PubMedCrossRefGoogle Scholar
  8. 8.
    Bierman, E. L. (1978) The effects of donor age on the in vitro life span of cultured human arterial smooth-muscle cells. In Vitro 14, 951–955.PubMedCrossRefGoogle Scholar
  9. 9.
    Tassin, J., Malaise, E., and Courtois, Y. (1979) Human lens cells have an in vitro proliferative capacity inversely proportional to the donor age. Exp. Cell Res. 123, 388–392.CrossRefGoogle Scholar
  10. 10.
    Mueller, S. N., Rosen, E. M., and Levine, E. M. (1980) Cellular senescence in a cloned strain of bovine fetal aortic endothelial cells. Science 207, 889–891.PubMedCrossRefGoogle Scholar
  11. 11.
    Tice, R. R., Schneider, E. L., Kram, D., and Thorne, P. (1979) Cytokinetic analysis of impaired proliferative response of peripheral lymphocytes from aged humans to phytohemagglutinin. J. Exp. Med. 149, 1029–1041.PubMedCrossRefGoogle Scholar
  12. 12.
    Le Guill, Y., Simon, M., Lenoir, P., and Bourel, M. (1973) Long-term culture of human adult liver cells: morphological changes related to in vitro senescence and effect of donor’s age on growth potential. Gerontologia 19, 303–313.CrossRefGoogle Scholar
  13. 13.
    Medrano, E. E., Yang, F., Boissy, R., Farooqui, J., Shah, V., Matsumoto, K., Nordlund, J. J., and Park, H. Y. (1994) Terminal differentiation and senescence in the human melanocyte: repression of tyrosine-phosphorylation of the extracellular signal-regulated kinase 2 selectively defines the two phenotypes. Mol. Biol. Cell 5, 497–509.PubMedGoogle Scholar
  14. 14.
    Cristofalo, V. J., Palazzo, R., and Charpentier, R. (1980) Limited lifespan of human diploid fibroblasts in vitro: metabolic time or replications?, in Neural Regulatory Mechanisms During Aging (Adelman, R. C., Roberts, J., Baker, G. T., Baskin, S. I. and Cristofalo, V. J., eds.), Alan R. Liss, New York, pp. 203–206.Google Scholar
  15. 15.
    Cristofalo, V. J., Phillips, P. D., Sorger, T., and Gerhard, G. (1989) Alterations in the responsiveness of senescent cells to growth factors. J. Gerontol. 44, 55–62.PubMedGoogle Scholar
  16. 16.
    Allsopp, R. C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E. V., Futcher, A. B., Greider, C. W., and Harley, C. B. (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10,114–10,118.PubMedCrossRefGoogle Scholar
  17. 17.
    Wright, W. E. and Shay, J. W. (1992) Telomere positional effects and the regulation of cellular senescence. TIG 8, 193–197.PubMedCrossRefGoogle Scholar
  18. 18.
    Seshadri, T. and Campisi, J. (1990) Repression of c-fos transcription and an alteredgentic program in senescent human fibroblasts. Science 247, 205–209.PubMedCrossRefGoogle Scholar
  19. 19.
    Oshima, J., Campisi, J., Tannock, C. A., and Martin, G. M. (1995) Regulation of c-fos expression in senescing Werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors. J. Cell. Physiol. 162, 277–283.PubMedCrossRefGoogle Scholar
  20. 20.
    Keogh, B. P., Tresini, M., Cristofalo, V. J., and Allen, R. G. (1995) Effects of cellular aging on the induction of c-fos by antioxidant treatments. Mech. Ageing Dev. 86, 151–160.CrossRefGoogle Scholar
  21. 21.
    Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., and Harley, C. B. (1992) Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951–960.PubMedCrossRefGoogle Scholar
  22. 22.
    von Zglinick, T., Saretzki, G., Döcke, W., and Lotze, C. (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp. Cell Res. 220, 186–192.CrossRefGoogle Scholar
  23. 23.
    Feng, J., Funk, W. D., Wang, S.-S., Weinrich, S. L., Avilion, A. A., Chiu, C.-C., Adams, R. R., Chang, E., Allsopp, R. C., Yu, J., Le, S., West, M. D., Harley, C. B., Andrews, W. H., Greider, C. W., and Villeponteau, B. (1995) The RNA component of human telomerase. Science 269, 1236–1241.PubMedCrossRefGoogle Scholar
  24. 24.
    Counter, C. M., Avilion, A. A., LeFeuvre, C. E., Stewart, N. G., Greider, C. W., Harley, C. B., and Bacchetti, S. (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929.PubMedGoogle Scholar
  25. 25.
    Blasco, M. A., Funk, W., Villeponteau, B., and Greider, C. W. (1995) Functional characterization and developmental regulation of mouse telomerase RNA. Science 269, 1267–1270.PubMedCrossRefGoogle Scholar
  26. 26.
    Wainwright, L. J., Middleton, P. G., and Rees, J. L. (1995) Changes in mean telomere length in basal cell carcinomas of the skin. Genes Chromosomes Cancer 12, 45–49.PubMedCrossRefGoogle Scholar
  27. 27.
    Hiyama, K., Ishioka, S., Shirotani, Y., Inai, K., Hiyama, E., Murakami, I., Isobe, T., Inamizu, T., and Yamakido, M. (1995) Alterations in telomeric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. Oncogene 10, 937–944.PubMedGoogle Scholar
  28. 28.
    Goldstein, S. and Harley, C. B. (1979) In vitro studies of age-associated diseases. Fed. Proc. 38, 1862–1867.PubMedGoogle Scholar
  29. 29.
    Brown, W. T. (1990) Genetic diseases of premature aging as models of senescence, in Annual Review of Gerontology and Geriatrics, vol. 10 (Cristofalo, V. J. and Lawton, M. P., eds.), Springer, New York, pp. 23–52.Google Scholar
  30. 30.
    Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C.-P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S., and Wright, W. E. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352.PubMedCrossRefGoogle Scholar
  31. 31.
    Harley, C. B., Shmookler Rei, R. J., and Goldstein, S. (1982) Loss of repetitious DNA in proliferating somatic cells may be due to unequal recombination. J. Theor. Biol. 94, 1–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Shmookler Rei, R. J. and Goldstein, S. (1980) Loss of reiterated DNA sequences during serial passage of human diploid fibroblasts. Cell 21, 739–749.CrossRefGoogle Scholar
  33. 33.
    Gorman, S. D. and Cristofalo, V. J. (1985) Reinitiation of cellular DNA synthesis in BrdU-selected nondividing senescent WI-38 cells by simian virus 40 infection. J. Cell. Physiol. 125, 122–126.PubMedCrossRefGoogle Scholar
  34. 34.
    Chang, C.-D., Phillips, P., Lipson, K. E., Cristofalo, V. J., and Baserga, R. (1991) Senescent human fibroblasts have a post-transcriptional block in the expression of the proliferating cell nuclear antigen gene. J. Biol. Chem. 266, 8663–8666.PubMedGoogle Scholar
  35. 35.
    Pendergrass, W. R., Saulewicz, A. C., Hanaoka, F., and Norwood, T. H. (1994) Murine temperature-sensitive DNA polymerase alpha mutant displays a diminished capacity to stimulate DNA synthesis in senescent human fibroblast nuclei in heterokaryons at the nonpermissive condition. J. Cell. Physiol. 158, 270–276.PubMedCrossRefGoogle Scholar
  36. 36.
    Pendergrass, W. R., Angello, J. C., Saulewicz, A. C., and Norwood, T. H. (1991) DNA polymerase alpha and the regulation of entry into S phase in heterokaryons. Exp. Cell Res. 192, 426–432.PubMedCrossRefGoogle Scholar
  37. 37.
    Pendergrass, W. R., Angello, J. C., Kirschner, M. D., and Norwood, T. H. (1991) The relationship between the rate of entry into S phase, concentration of DNA polymerase alpha, and cell volume in human diploid fibroblast-like monokaryon cells. Exp. Cell Res. 192, 418–425.PubMedCrossRefGoogle Scholar
  38. 38.
    Cristofalo, V. J. (1973) Cellular senescence, factors modulating cell proliferation in vitro, in INSERM (Bourliere, F., Courtois, Y., Maciera-Coelho, A., and Robert, L., eds.), INSERM, Paris, pp. 65–92.Google Scholar
  39. 39.
    Olashaw, N. E., Kress, E. D., and Cristofalo, V. J. (1983) Thymidine triphosphate synthesis in senescent WI38 cells. Relationship to loss of replicative capacity. Exp. Cell Res. 149, 547–554.PubMedCrossRefGoogle Scholar
  40. 40.
    Pignolo, R. J., Martin, B. G., Horton, J. H., Kalbach, A. N., and Cristofalo, V. J. (1998) The pathway of cell senescence: WI-38 cells arrest in late G1 and are unable to traverse the cell cycle from a true G0 state. Exp. Gerontol. 33, 67–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Rittling, S. R., Brooks, K. M., Cristofalo, V. J., and Baserga, R. (1986) Expression of cell cycle-dependent genes in young and senescent WI-38 fibroblasts. Proc. Natl. Acad. Sci. USA 83, 3316–3320.PubMedCrossRefGoogle Scholar
  42. 42.
    Stein, G. H., Drullinger, L. F., Robetorye, R. S., Pereira-Smith, O. M., and Smith, J. R. (1991) Senescent cells fail to express cdc2, cycA, and cycB in response to mitogen stimulation. Proc. Natl. Acad. Sci. USA 88, 11,012–11,016.PubMedCrossRefGoogle Scholar
  43. 43.
    Cristofalo, V. J., Doggett, D. L., Brooks-Frederich, K. M., and Phillips, P. D. (1989) Growth factors as probes of cell aging. Exp. Gerontol. 24, 367–374.PubMedCrossRefGoogle Scholar
  44. 44.
    Hosokawa, M., Phillips, P. D., and Cristofalo, V. J. (1986) The effect of dexamethasone on epidermal growth factor binding and stimulation of proliferation in young and senescent WI38 cells. Exp. Cell Res. 164, 408–414.PubMedCrossRefGoogle Scholar
  45. 45.
    De Tata, V., Ptasznik, A., and Cristofalo, V. J. (1993) Effect of the tumor promotor phorbol 12-myristate 13-acetate (PMA) on proliferation of young and senescent WI-38 human diploid fibroblasts. Exp. Cell Res. 205, 261–269.PubMedCrossRefGoogle Scholar
  46. 46.
    Goodman, L. and Stein, G. H. (1994) Basal and induced amounts of interleukin 6 mRNA decline progressively with age in human fibroblasts. J. Biol. Chem. 269, 19250–19255.PubMedGoogle Scholar
  47. 47.
    Wheaton, K., Atadja, P., and Riabowol, K. (1996) Regulation of transcription factor activity during cellular aging. Biochem. Cell Biol. 74, 523–534.PubMedCrossRefGoogle Scholar
  48. 48.
    Hara, E., Uzman, J. A., Dimri, G. P., Nehlin, J. O., Testori, A., and Campisi, J. (1996) The helix-loop-helix protein Id-1 and a retinoblastoma protein binding mutant of SV40 T antigen synergize to reactivate DNA synthesis in senescent human fibroblasts. Dev. Genet. 18, 161–172.PubMedCrossRefGoogle Scholar
  49. 49.
    Gerhard, G. S., Phillips, P. D., and Cristofalo, V. J. (1991) EGF-and PDGF-stimulated phosphorylation in young and senescent WI-38 cells. Exp. Cell Res. 193, 87–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Phillips, P. D., Kuhnle, E., and Cristofalo, V. J. (1983) 125I-EGF binding activity is stable throughout the replicative life-span of WI-38 cells. J. Cell. Physiol. 114, 311–316.PubMedCrossRefGoogle Scholar
  51. 51.
    Phillips, P. D., Pignolo, R. J., and Cristofalo, V. J. (1987) Insulin-like growth factor-I: specific binding to high and low affinity sites and mitogenic action throughout the life span of WI-38 cells. J. Cell. Physiol. 133, 135–143.PubMedCrossRefGoogle Scholar
  52. 52.
    Ferber, A., Chang, C., Sell, C., Ptasznik, A., Cristofalo, V. J., Hubbard, K., Ozer, H. L., Adamo, M., Roberts, C. T., Jr., LeRoith, D. (1993) Failure of senescent human fibroblasts to express the insulin-like growth factor-1 gene. J. Biol. Chem. 268, 17,883–17,888.PubMedGoogle Scholar
  53. 53.
    Brooks-Frederich, K. M., Cianciarulo, F. L., Rittling, S. R., and Cristofalo, V. J. (1993) Cell cycle-dependent regulation of Ca2+ in young and senescent WI-38 cells. Exp. Cell Res. 205, 412–415.PubMedCrossRefGoogle Scholar
  54. 54.
    Allen, R. G., Tresini, M., Keogh, B. P., Doggett, D. L., and Cristofalo, V. J. (1999) Differences in electron transport potential antioxidant defenses and oxidant generation in young and senescent fetal lung fibroblasts (WI-38). J. Cell. Physiol. 180, 114–122.PubMedCrossRefGoogle Scholar
  55. 55.
    Blumenthal, E. J., Miller, A. C., Stein, G. H., and Malkinson, A. M. (1993) Serine/ threonine protein kinases and calcium-dependent protease in senescent IMR-90 fibroblasts. Mech. Ageing Dev. 72, 13–24.PubMedCrossRefGoogle Scholar
  56. 56.
    Venable, M. E., Blobe, G. C., and Obeid, L. M. (1994) Identification of a defect in the phospholipase D/diacylglycerol pathway in cellular senescence. J. Biol. Chem. 269, 26,040–26,044.PubMedGoogle Scholar
  57. 57.
    Cook, S. J. and McCormick, F. (1996) Kinetic and biochemical correlation between sustained p44ERK1 (44 kDa extracellular signal-regulated kinase 1) activation and lysophosphatidic acid-stimulated DNA synthesis in Rat-1 cells. Biochem. J. 320, 237–245.PubMedGoogle Scholar
  58. 58.
    Lavoie, J. N., G, L. A., Brunet, A., Muller, R., and Pouyssegur, J. (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271, 20608–20616.PubMedCrossRefGoogle Scholar
  59. 59.
    Meloche, S. (1995) Cell cycle reentry of mammalian fibroblasts is accompanied by the sustained activation of p44mapk and p42mapk isoforms in the G1 phase and their inactivation at the G1/S transition. J. Cell. Physiol. 163, 577–588.PubMedCrossRefGoogle Scholar
  60. 60.
    Walter, S. A., Guadagno, T. M., and Ferrell, J. E., Jr. (1997) Induction of a G2-phase arrest in Xenopus egg extracts by activation of p42 mitogen-activated protein kinase. Mol. Biol. Cell 8, 2157–2169.PubMedGoogle Scholar
  61. 61.
    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16ink4a. Cell 88, 593–602.PubMedCrossRefGoogle Scholar
  62. 62.
    Rohme, D. (1981) Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc. Natl. Acad. Sci. USA 78, 5009–5013.PubMedCrossRefGoogle Scholar
  63. 63.
    Hayflick, L. (1965) The limited in vitro lifetime of human diploid strains. Exp. Cell Res. 37, 614–636.PubMedCrossRefGoogle Scholar
  64. 64.
    Schneider, E. L. and Mitsui, Y. (1976) The relationship between in vitro cellular aging and in vivo human age. Proc. Natl. Acad. Sci. USA 73, 3584–3588.PubMedCrossRefGoogle Scholar
  65. 65.
    Martin, G. M., Sprague, C. A., and Epstein, C. J. (1970) Replicative life-span of cultivated human cells. Lab. Invest. 23, 86–92.PubMedGoogle Scholar
  66. 66.
    Guilly, Y. L., Simon, M., Lenoir, P., and Bourel, M. (1973) Long-term culture of human adult liver cells: morphological changes related to in vitro senescence and effect of donor’s age on growth potential. Gerontoglia (Basel) 19, 303–313.CrossRefGoogle Scholar
  67. 67.
    Bruce, S. A., Deamond, S. F., and Ts’o, P. O. P. (1986) In vitro senescence of syrian hamster mesenchymal cells of fetal to aged adult origin, inverse relationship between in vivo donor age and in vitro proliferative capacity. Mech. Ageing Dev. 34, 151–173.PubMedCrossRefGoogle Scholar
  68. 68.
    Goldstein, S., Moerman, E. J., Soeldner, J. S., Gleason, R. E., and Barnett, D. M. 1978) Chronologic and physiologic age affect replicative life-span of fibroblasts rom diabetic, prediabetic, and normal donors. Science 199, 781–782.Google Scholar
  69. 69.
    Schneider, E. L. (1979) Cell replication and aging: in vitro and in vivo studies. Fed. roc. 38, 1857–1861.Google Scholar
  70. 70.
    Smith, J. R., Pereira-Smith, O. M., and Schneider, E. L. (1978) Colony size distriution as a measure of in vivo and in vitro aging. Proc. Natl. Acad. Sci. USA 75, 353–1356.Google Scholar
  71. 71.
    Goldstein, S., Littlefield, J. W., and Soeldner, J. S. (1969) Diabetes mellitus and ging: diminished plating efficiency of cultured human fibroblasts. Proc. Natl. cad. Sci. USA 64, 155–160.CrossRefGoogle Scholar
  72. 72.
    Martin, G. M. (1978) Genetic syndromes in man with potential relevance to athobiology of aging, in Genetic Effects on Aging (Bergsma, D. and Harrison, D.., eds.), Alan Liss, New York, pp. 5–39.Google Scholar
  73. 73.
    Danes, B. S. (1971) Progeria: a cell culture study on aging. J. Clin. Invest. 50, 000–2003.CrossRefGoogle Scholar
  74. 74.
    Schneider, E. L. and Epstein, C. J. (1972) Replication rate and lifespan of cultured ibroblasts in Down’s syndrome. Proc. Soc. Exp. Biol. Med. 141, 1092–1094.PubMedGoogle Scholar
  75. 75.
    Martin, G. M., Ogburn, C. E., and Sprague, C. A. (1981) Effects of age on cell division capacity, in Aging: A Challenge to Science and Society, vol. 1 (Danon, D., Shock, N. W., and Marios, M., eds.), Oxford University Press, Oxford, England, pp. 124–135.Google Scholar
  76. 76.
    Rubin, H. (1997) Cell aging in vivo and in vitro. Mech. Ageing Dev. 98, 1–35.PubMedCrossRefGoogle Scholar
  77. 77.
    Pignolo, R. J., Masoro, E. J., Nichols, W. W., Brandt, C. I., and Cristofalo, V. J. (1992) Skin fibroblasts from aged Fischer 344 rats undergo similar changes in replicative life span but not immortalization with caloric restriction of donors. Exp. Cell Res. 201, 16–22.PubMedCrossRefGoogle Scholar
  78. 78.
    Bruce, S. A. and Deamond, S. F. (1991) Longitudinal study of in vivo wound repair and in vitro cellular senescence of dermal fibroblasts. Exp. Gerontol. 26, 17–27.PubMedCrossRefGoogle Scholar
  79. 79.
    Deamond, S. F. and Bruce, S. A. (1991) Age-related differences in the promoterinduced extension of in vitro proliferative life span of syrian hamster fibroblasts. Mech. Ageing Dev. 60, 143–152.PubMedCrossRefGoogle Scholar
  80. 80.
    Cristofalo, V. J., Allen, R. G., Pignolo, R. P., Martin, B. M., and Beck, J. C. (1998) Relationship between donor age and the replicative life spans of human cells in culture: a re-evaluation. Proc. Natl. Acad. Sci. USA 95, 10614–10619.PubMedCrossRefGoogle Scholar
  81. 81.
    Millis, A. J. T., Sottile, J., Hoyle, M., Mann, D. M., and Diemer, V. (1989) Collagenase production by early and late passage cultures of human fibroblasts. Exp. Gerontol. 24, 559–575.PubMedCrossRefGoogle Scholar
  82. 82.
    Sottile, J., Mann, D. M., Diemer, V., and Millis, A. J. (1989) Regulation of collagenase and collagenase mRNA production in early-and late-passage human diploid fibroblasts. J. Cell. Physiol. 138, 281–290.PubMedCrossRefGoogle Scholar
  83. 83.
    Seshadri, T. and Campisi, J. (1989) Growth-factor-inducible gene expression in senescent human fibroblasts. Exp. Gerontol. 24, 515–522.PubMedCrossRefGoogle Scholar
  84. 84.
    Grassilli, E., Bellesia, E., Salomoni, P., Croce, M. A., Sikora, E., Radziszewska, E., Tesco, G., Vergelli, M., Latorraca, S., Babieri, D., Fagiolo, U., Santacaterina, S., Amaducci, L., Tiozzo, R., Sorbi, S., and Franceschi, C. (1996) C-Fos/C-Jun expression and AP-1 activation in skin fibroblasts from centenarians. Biochem. Biophys. Res. Commun. 226, 517–523.PubMedCrossRefGoogle Scholar
  85. 85.
    Millis, A. J., Hoyle, M., McCue, H. M., and Martini, H. (1992) Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts. Exp. Cell Res. 201, 373–379.PubMedCrossRefGoogle Scholar
  86. 86.
    Pignolo, R. J., Cristofalo, V. J., and Rotenberg, M. O. (1993) Senescent WI-38 cells fail to express EPC-1, a gene induced by young cells upon entry into the G0 state. J. Biol. Chem. 268, 8949–8957.PubMedGoogle Scholar
  87. 87.
    Tresini, M., Pignolo, R., Allen, R. G., Rottenberg, M. O., and Cristofalo, V. J. (1999) Expression of EPC-1 in human skin fibroblasts derived from donors of different ages. J. Cell Physiol. 179, 11–17.PubMedCrossRefGoogle Scholar
  88. 88.
    Wes, M. D., Shay, J. W., Wright, W. E., and Linskens, M. H. K. (1996) Altered expression of plasmogen activator and plasmogen activator inhibitor during cellular senescence. Exp. Gerontol. 31, 175–193.CrossRefGoogle Scholar
  89. 89.
    Ranby, M., Bergsdorf, N., Nisson, T., Mellbring, G., Winblad, B., and Bucht, G. (1986) Age dependence of tissue plasminogen activator concentrations in plasma, as studied by an improved enzyme-linked immunosorbent assay. Clin. Chem. 32, 2160–2165.PubMedGoogle Scholar
  90. 90.
    Wang, S. M., Phillips, P. D., Sierra, F., and Cristofalo, V. J. (1996) Altered expression of the twist gene in young versus senescent human diploid fibroblasts. Exp. Cell Res. 228, 138–145.PubMedCrossRefGoogle Scholar
  91. 91.
    Goldstein, S., Moerman, E. J., and Baxter, R. C. (1993) Accumulation of insulin-like growth factor binding protein-3 in conditioned medium of human fibroblasts increases with chronological age of donor and senescence in vitro. J. Cell. Physiol. 156, 294–302.PubMedCrossRefGoogle Scholar
  92. 92.
    Keogh, B. P., Allen, R. G., Pignolo, R., Horton, J., Tresini, M., and Cristofalo, V. J. (1996) Expression of hydrogen peroxide and glutathione metabolizing enzymes in human skin fibroblasts derived from donors of different ages. J. Cell. Physiol. 167, 512–522.PubMedCrossRefGoogle Scholar
  93. 93.
    Takeda, K., Gosiewska, A., and Peterkofsky, B. (1992) Similar, but not identical, modulation of expression of extracellular matrix components during in vitro and in vivo aging of human skin fibroblasts. J. Cell. Physiol. 153, 450–459.PubMedCrossRefGoogle Scholar
  94. 94.
    Deguchi, Y., Negoro, S., and Kishimoto, S. (1988) Age-related changes of heat shock protein gene transcription in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 157, 580–584.CrossRefGoogle Scholar
  95. 95.
    Kumazaki, T., Wadhwa, R., Kaul, S. C., and Mitsui, Y. (1997) Expression of endothelin, fibronectin, and mortalin as aging and mortality markers. Exp. Gerontol. 32, 95–103.PubMedCrossRefGoogle Scholar
  96. 96.
    Allen, R. G., Keogh, B. P., Tresini, M., Gerhard, G. S., Volker, C., Pignolo, R. J., Horton, J., and Cristofalo, V. J. (1997) Development and age-associated differences in electron transport potential and consequences for oxidant generation. J. Biol. Chem. 272, 24,805–24,812.PubMedCrossRefGoogle Scholar
  97. 97.
    Doggett, D. L., Rotenberg, M. O., Pignolo, R. J., Phillips, P. D., and Cristofalo, V. J. (1992) Differential gene expression between young and senescent, quiescent WI-38 cells. Mech. Ageing Dev. 65, 239–255.PubMedCrossRefGoogle Scholar
  98. 98.
    Praeger, F. C. and Gilchrest, B. A. (1986) Influence of increased extracellular calcium and donor age on density-dependent growth inhibition of human fibroblasts (42345) Proc. Soc. Exp. Biol. Med. 182, 315–321.PubMedGoogle Scholar
  99. 99.
    Praeger, F. C. and Cristofalo, V. J. (1986) The growth of WI-38 in a serum-free, growth factor-free, medium with elevated calcium concentrations. In Vitro 22, 355–359.Google Scholar
  100. 100.
    Furth, J. J., Allen, R. G., Tresini, M., Keogh, B., and Cristofalo, V. J. (1997) Abundance of α1(I) and α1(III) procollagen and p21 mRNAs in fibroblasts cultured from fetal and postnatal donors. Mech. Ageing Dev. 97, 131–142.PubMedCrossRefGoogle Scholar
  101. 101.
    Nakanish, M., Robertorye, R. S., Adami, G. R., Pereira Smith, O. M., and Smith J. R. (1995) Identification of the active region of the DNA synthesis inhibitorygene p21Sdi1/CIP1/WAF1. Embo J. 14, 555–563.Google Scholar
  102. 102.
    Allen, R. G., Keogh, B. P., Gerhard, G., Pignolo, R., Horton, J., and Cristofalo, V. J. (1995) Expression and regulation of SOD activity in human skin fibroblasts from donors of different ages. J. Cell. Physiol. 165, 576–587.PubMedCrossRefGoogle Scholar
  103. 103.
    Kumar, S., Millis, A. J. T., and Baglioni, C. (1992) Expression of interleukin 1-inducible genes and production of interleukin 1 by aging human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 4683–4687.PubMedCrossRefGoogle Scholar
  104. 104.
    Lapiere, C. M. (1988) Aging of fibroblasts, collagen and the dermis, in Cutaneous Aging (Kligman, A. M. and Takase, Y., eds.), University of Tokyo Press, Tokyo, 47–60.Google Scholar
  105. 105.
    Choi, A. M. K., Olsen, D. R., Cook, K. G., Deamond, S. F., Uitto, J., and Bruce, S. A. (1992) Differential extracellular matrix gene expression by fibroblasts during their proliferative life span in vitro and senescence. J. Cell. Physiol. 151, 147–155.PubMedCrossRefGoogle Scholar
  106. 106.
    Robbins, E., Levine, E. M., and Eagle, H. (1970) Morphologic changes accompanying senescence of cultured human diploid cells. J. Exp. Med. 131, 1211–1222.PubMedCrossRefGoogle Scholar
  107. 107.
    Bell, E., Marek, L. F., Levinstone, D. S., Merril, C., Sher, S., and Eden, M. (1978) Loss of division potential in vitro: aging or differentiation? Science 202, 1158–1163.PubMedCrossRefGoogle Scholar
  108. 108.
    Bell, E., Marek, L., Sher, S., Merrill, C., Levinstone, D., and Young, I. (1979) Do diploid fibroblasts in culture age? Int. Rev. Cytol. (Suppl. 10), 1–9.Google Scholar
  109. 109.
    Bayreuther, K., Francz, P. I., Gogol, J., Maier, M., and Meinrath, G. (1991) Differentiation of primary and secondary fibroblasts in cell culture systems. Mutat. Res. 256, 233–242.PubMedGoogle Scholar
  110. 110.
    Kontermann, K. and Bayreuther, K. (1979) The cellular aging of rat fibroblasts in vitro is a differentiation process. Gerontology 25, 261–274.PubMedCrossRefGoogle Scholar
  111. 111.
    Bayreuther, K., Rodemann, H. P., Hommel, R., Dittamann, K., Albiez, M., and Francz, P. I. (1988) Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc. Natl. Acad. Sci. USA 85, 5112–5116.PubMedCrossRefGoogle Scholar
  112. 112.
    Campisi, J. (1997) Aging and cancer: the double-edged sword of replicative senescence. J. Am. Geriatr. Soc. 45, 482–488.PubMedGoogle Scholar
  113. 113.
    Livinstone, D., Eden, M., and Bell, E. (1983) Similarity of sister-cell trajectories in fibroblast clones. J. Cell Sci. 59, 105–119.Google Scholar
  114. 114.
    Linskens, M. H. K., Fseng, J., Andrews, W. H., Enlow, B. E., Saati, S. M., Tonkin, L. A., Funk, W. D., and Villeponteau, B. (1995) Cataloging altered gene expression in yong and senescent cells using enhanced differential display. Nucleic Acids Res. 23, 3244–3251.PubMedCrossRefGoogle Scholar
  115. 115.
    Kumar, S., Vinci, J. M., Millis, A. J. T., and Baglioni, C. (1993) Expression of interleukin-1α and β in early passage fibroblasts from aging individuals. Exp. Gerontol. 28, 505–513.PubMedCrossRefGoogle Scholar
  116. 116.
    Karlsson, C. and Paulsson, Y. (1994) Age-related induction of platelet-derived growth factor A-chain mRNA in normal human fibroblasts. J. Cell. Physiol. 158, 256–262.PubMedCrossRefGoogle Scholar
  117. 117.
    Slayback, J. R., Cheung, L. W., and Geyer, R. P. (1977) Comparative effects of human platelet growth factor on the growth and morphology of human fetal and adult diploid fibroblasts. Exp. Cell Res. 110, 462–466.PubMedCrossRefGoogle Scholar
  118. 118.
    Furth, J. J. (1991) The steady state levels of type I collagen mRNA are reduced in senescent fibroblasts. J. Gerontol. 46, B122–B124.PubMedGoogle Scholar
  119. 119.
    Wharton, W. (1984) Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements. Exp. Cell Res. 154, 310–314.PubMedCrossRefGoogle Scholar
  120. 120.
    Clemmons, D. R. (1983) Age-dependent production of a competent factor by human fibroblasts. J. Cell. Physiol. 114, 61–67.PubMedCrossRefGoogle Scholar
  121. 121.
    Kondo, H. and Yonezawa, Y. (1995) Fetal-adult phenotype transition, in terms of the serum dependency and growth factor requirements, of human skin fibroblast migration. Exp. Cell Res. 220, 501–504.PubMedCrossRefGoogle Scholar
  122. 122.
    Chen, Q., Fisher, A., Reagan, J. D., Yan, L. J., and Ames, B. N. (1995) Oxidative DNA damage and senescence of human diploid fibroblasts. Proc. Natl. Acad. Sci. USA 92, 4337–4341.PubMedCrossRefGoogle Scholar
  123. 123.
    Venable, M. E., Lee, J. Y., Smyth, M. J., Bielawska, A., and Obeid, L. M. (1995) Role of ceramide in cellular senescence. J. Biol. Chem. 270, 30701–30708.PubMedCrossRefGoogle Scholar
  124. 124.
    Tresini, M., Mawaldewan, M., Cristofalo, V. J., and Sell, C. (1998) A phosphatidylinositol 3-kinase inhibitor induces a senescent-like growth arrest in human diploid fibroblasts. Cancer Res. 58, 1–4.PubMedGoogle Scholar
  125. 125.
    Ogryzko, V. V., Hirai, T. H., Russanova, V. R., Barbie, D. A., and Howard, B. H. (1996) Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol. Cell. Biol. bd16, 5210–5218.Google Scholar
  126. 126.
    Goldstein, S., Moerman, E. J., Soeldner, J. S., Gleason, R. E., and Barnett, D. M. (1979) Diabetes mellitus and genetic prediabetes. Decreased replicative capacity of cultured skin fibroblasts. J. Clin. Invest. 63, 358–370.PubMedCrossRefGoogle Scholar
  127. 127.
    Phillips, P. D. and Cristofalo, V. J. (1988) Classification system based on the functional equivalency of mitogens that regulate WI-38 cell proliferation. Exp. Cell Res. 175, 396–403.PubMedCrossRefGoogle Scholar
  128. 128.
    Matsumura, T., Zerrudo, Z., and Hayflick, L. (1979) Senescent human diploid cells in culture: suvival, DNA synthesis and morphology. J. Gerontol. 34, 328–334.PubMedGoogle Scholar
  129. 129.
    Cristofalo, V. J. and Sharf, B. B. (1973) Cellular senescence and DNA synthesis: thymidine incorporation as a measure of population age in human diploid cells. Exp. Cell Res. 76, 419–427.PubMedCrossRefGoogle Scholar
  130. 130.
    Cristofalo, V. J. and Kritchevsky, D. (1965) Growth and glycolysis in the human diploid cell strain WI-38. Proc. Soc. Exp. Biol. Med. 118, 1109–1113.PubMedGoogle Scholar
  131. 131.
    Levine, E. M. (1972) Mycoplasma contamination of animal cell cultures: a simple, rapid detection method. Exp. Cell Res. 74, 99–109.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Vincent J. Cristofalo
    • 1
  • Craig Volker
    • 1
  • Robert G. Allen
    • 1
  1. 1.Center for Gerontological ResearchAllegheny University of the Health SciencesPhiladelphiaPA

Personalised recommendations