Skip to main content

Assaying Spatial Organization of Microtubules by Kinesin Motors

  • Protocol
  • 584 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 164))

Abstract

A fundamental property of some motor proteins is their ability to organize filaments in space (1). This property is a consequence of their oligomeric state, which makes them able to simultaneously bind two microtubules. Here, we describe an in vitro assay for the direct observation of the organization of microtubules by these motors. With this assay, patterns of microtubules are formed that reflect the morphogenetic abilities of the motors. The assay relies on the collective behavior of motors and microtubules in solution. It is, therefore, qualitatively different from methods based on immobilization of motor proteins, as, for example, in motility assays (2,3).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nedelec, F. J., Surrey, T., Maggs, A. C., and Leibler, S. (1997) Self-organization of microtubules and motors. Nature 389, 305–308.

    Article  PubMed  CAS  Google Scholar 

  2. J. Howard, Hunt, A. J., Back., S. (1993) Assay for microtubule movement driven by single kinesin molecules, in Methods in Cell Biology, vol. 39: Motility Assays For Motor Proteins (Scholey, J.M., ed.), Academic, Sand Diego, CA, pp. 138–147.

    Google Scholar 

  3. Svoboda, K. and Block, S. M. (1994) Force and velocity measured for single kinesin molecules. Cell 77, 773–784.

    Article  PubMed  CAS  Google Scholar 

  4. Kashina, A. S., Rogers, G. C., and Scholey, J. M. (1997) The bimC family of kinesins: essential bipolar mitotic motors driving centrosome separation. Biochim. Biophys. Acta 1357, 257–271.

    Article  PubMed  CAS  Google Scholar 

  5. Merdes, A., Ramyar, K., Vechio, J. D., and Cleveland, D. W. (1996) A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458.

    Article  PubMed  CAS  Google Scholar 

  6. Amos L. A. and Cross, R. A. (1997) Structure and dynamics of molecular motors. Curr. Opin. Struct. Biol. 7, 239–246.

    Article  PubMed  CAS  Google Scholar 

  7. Holy T. E., Dogterom, M., Yurke, B., and Leibler, S. (1997) Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl. Acad. Sci. USA 94, 6228–6231.

    Article  PubMed  CAS  Google Scholar 

  8. Jnoue, S. (ed.) (1989) Video Microscopy. Plenum, New York.

    Google Scholar 

  9. Young, E. C., Berliner, E., Mahtani, H. K., Perez-Ramirez, B., and Gelles, J. (1995) Subunit interaction in dimeric kinesin heavy chain derivatives that lack the kinesin rod. J. Biol. Chem. 270, 3926–3931.

    Article  PubMed  CAS  Google Scholar 

  10. Stewart, R. J., Thaler, J. P., and Goldstein, L. B. (1993) Direction of microtubule movement is an intrinsic property of the motor domains of kinesin heavy chain and Drosophila NCD protein. Proc. Natl. Acad. Sci. USA 90, 5209–5213.

    Article  PubMed  CAS  Google Scholar 

  11. Studier, F. W. (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 219, 37–44.

    Article  PubMed  CAS  Google Scholar 

  12. Ashford, A. J., Andersen, S. S. L., and Hyman, A. A. (1998) Preparation of tubulin from bovine brain, in Cell Biology: A Laboratory Handbook, vol. 2 (Celis, J. E., ed.), Academic, San Diego, CA, pp. 205–212.

    Google Scholar 

  13. Berliner, E., Mahtani, H. K., Karki, S., Chu, L. F., Cronan, J. E., Jr., and Gelles, J. (1994) Microtubule movement by a biotinated kinesin bound to a streptavidin-coated surface. J. Biol. Chem. 269, 8610–8615.

    PubMed  CAS  Google Scholar 

  14. Lepault, J. and Dubochet, J. (1986) Electron microscopy of frozen hydrated specimens: preparation and characteristics. Methods Enzymol. 127, 719–730.

    Article  PubMed  CAS  Google Scholar 

  15. Harlow, E., and Lane, D. (eds.) (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  16. Brown, P. O., Stanford University, Experimental Protocols http://cmgm.stanford.edu/ pbrown/protocols.

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Nédélec, F., Surrey, T. (2001). Assaying Spatial Organization of Microtubules by Kinesin Motors. In: Vernos, I. (eds) Kinesin Protocols. Methods in Molecular Biology™, vol 164. Humana Press. https://doi.org/10.1385/1-59259-069-1:213

Download citation

  • DOI: https://doi.org/10.1385/1-59259-069-1:213

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-766-3

  • Online ISBN: 978-1-59259-069-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics