Skip to main content

The Use of Dominant Negative Mutants to Study the Function of Mitotic Motors in the In Vitro Spindle Assembly Assay in Xenopus Egg Extracts

  • Protocol
  • 575 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 164))

Abstract

The mitotic spindle is a transient cellular structure that distributes faithfully the chromosomes among the two daughter cells during mitosis. This highly dynamic bipolar structure assembles and disassembles periodically and its main structural components are microtubules (MTs) and chromosomes. Microtubule-dependent motors in particular members of the kinesin superfamily play an important role in directing the self-organization of microtubules into a bipolar spindle.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Felix, M. A., Clarke, P. R., Coleman, J., Verde, F., and Karsenti, E. (1993) Frog Egg Extract as a System to Study Mitosis in: The Cell Cycle: a practical approach (Fantes, P., ed.), IRL, Oxford, pp. 253–283.

    Google Scholar 

  2. Sawin, K. E. and Mitchison, T. J. (1991) Mitotic spindle assembly by two different pathways in vitro. J. Cell Biol. 112, 925–940.

    Article  PubMed  CAS  Google Scholar 

  3. Murray, A. (1991) Cell cycle extracts, in Xenopus Laevis: Practical Uses in Cell and Molecular Biology, vol. 36 (Kay, B. K. and Peng, H. B., eds.), Academic, San Diego New York, pp. 581–605.

    Chapter  Google Scholar 

  4. Heald, R., Tournebize, R., Blank, T., Sandaltzopoulos, R., Becker, P., Hyman, A., and Karsenti, E. (1996) Self organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425.

    Article  PubMed  CAS  Google Scholar 

  5. Boleti, H., Karsenti, E., and Vernos, I. (1996) Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell. 84, 49–59.

    Article  PubMed  CAS  Google Scholar 

  6. Walczak, C., Mitchison, T. J., and Desai, A. B. (1996) XKCM1: A Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47.

    Article  PubMed  CAS  Google Scholar 

  7. Walczak, C. E., Verma, S., and Mitchison, T. J. (1997) XCTK2: a kinesin-related protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J. Cell Biol. 136, 859–870.

    Article  PubMed  CAS  Google Scholar 

  8. Wood, K. W., Sakowicz, R., Goldstein, L. S., and Cleveland, D. W. (1997) CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91, 357–366.

    Article  PubMed  CAS  Google Scholar 

  9. Sawin, K. E., LeGuellec, K., Philippe, M., and Mitchison, T. J. (1992) Mitotic spindle organization by plus-end-directed microtubule motor. Nature 359, 540–543.

    Article  PubMed  CAS  Google Scholar 

  10. Vernos, I., Raats, J., Hirano, T., Heasman, J., Karsenti, E., and Wylie, C. (1995) Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 81, 117–127.

    Article  PubMed  CAS  Google Scholar 

  11. Vernos, I., Heasman, J., and Wylie, C. (1993) Multiple kinesin-like transcripts in Xenopus oocytes. Dev. Biol. 157, 232–239.

    Article  PubMed  CAS  Google Scholar 

  12. Wittmann, T., Boleti, H., Antony, C., Karsenti, E., and Vernos, I. (1998) Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685.

    Article  PubMed  CAS  Google Scholar 

  13. Hyman, A., Drechsel, D., Kellogg, D., Salser, S., Sawin, K., Steffen, P., et al. (1991) Preparation of modified tubulins. Methods Enzymol. 196, 478–485.

    Article  PubMed  CAS  Google Scholar 

  14. Kirschner, M. W., Newport, J., and Gerhart, J. C. (1985) The timing of early developmental events in Xenopus. Trends Genet. 1, 41–47.

    Article  Google Scholar 

  15. Lohka, M. and Maller, J. (1985) Induction of nuclear envelope breakdown chromosome condensation, and spindle formation in cell-free extracts. J. Cell Biol. 101, 518–523.

    Article  PubMed  CAS  Google Scholar 

  16. Shamu, C. E. and Murray, A. W. (1992) Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase. J. Cell Biol. 117, 921–934.

    Article  PubMed  CAS  Google Scholar 

  17. Gurdon, J. B. (1976) Injected nuclei in frog oocytes: fate, enlargement, and chromatin dispersal. J. Embryol. Exp. Morphol. 36, 523–540.

    PubMed  CAS  Google Scholar 

  18. Smith, D. B. and Johnson, K. S. (1988). Single step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Boleti, H., Karsenti, E., Vernos, I. (2001). The Use of Dominant Negative Mutants to Study the Function of Mitotic Motors in the In Vitro Spindle Assembly Assay in Xenopus Egg Extracts. In: Vernos, I. (eds) Kinesin Protocols. Methods in Molecular Biology™, vol 164. Humana Press. https://doi.org/10.1385/1-59259-069-1:173

Download citation

  • DOI: https://doi.org/10.1385/1-59259-069-1:173

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-766-3

  • Online ISBN: 978-1-59259-069-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics