Structural Analysis of the Microtubule–Kinesin Complex by Cryo-Electron Microscopy

  • Fabienne Beuron
  • Andreas Hoenger
Part of the Methods in Molecular Biology™ book series (MIMB, volume 164)

Abstract

The structures of microtubule-kinesin complexes have been intensely studied within the last few years by using negative stain or cryo-electron microscopy (cryo-EM; for a review, see ref. 1) and digital three-dimensional (3D) image reconstruction (2, 3, 4). On a working system, these methods constitute a straightforward approach to generate 3D data at around 20 Å resolution within a few weeks. Such maps all ow the interpretation the 3D configuration of protein domains such as the binding geometry of kinesin motor heads to tubulin protofilaments (5) or the configuration of dimeric kinesin motor domains when bound to microtubules under different nucleotide conditions (6, 7, 8). More recently, the availability of near-atomic-resolution data of the components of microtubule-kinesin complexes, namely the αβ-tubulin dimer (9) and several monomeric and dimeric kinesin motor constructs (for a review, see ref. 10), made it possible to interpret the structure of an intact microtubule (11) and the motor-tubulin interactions at near-atomic detail (8,12).

Keywords

Glycerol DMSO Propane Rubber Fluoride 

References

  1. 1.
    Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., MeDowall, A. W., and Schultz, P. (1988) Cryo-electron microscopy of vitrified specimens. Quart. Rev. Biophys. 21, 129–228.CrossRefGoogle Scholar
  2. 2.
    DeRosier, D. and Moore, P. B. (1970) Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52, 355–369.PubMedCrossRefGoogle Scholar
  3. 3.
    Amos, L. A., Henderson, R., and Unwin, P. N. T. (1982) Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Mol. Biol. 39, 183–231.PubMedCrossRefGoogle Scholar
  4. 4.
    Frank, J. (1996) Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Frank., J., ed.), Academic, San Diego, CA.Google Scholar
  5. 5.
    Hoenger, A. and Milligan, R. A. (1997) Motor domains of kinesin and Ncd interact with microtubule protofilaments with the same binding geometry. J. Mol. Biol. 265, 553–564.PubMedCrossRefGoogle Scholar
  6. 6.
    Hirose, K., Lockhart, A., Cross, R. A., and Amos, L. A. (1996) Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl. Acad. Sci. USA 93, 9539–9544.PubMedCrossRefGoogle Scholar
  7. 7.
    Arnal, I. and Wade, R. H. (1998) Nucleotide-dependent conformations of the kinesin dimer interacting with microtubules. Structure 6, 33–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Hoenger, A., Sack, S., Thormaehlen, M., Marx, A., Mueller, J., Gross, H., and Mandelkow, E. (1998) Image reconstruction of microtubules decorated with monomeric and dimeric kinesins: comparison with X-ray structure and implications for motility. J. Cell Biol. 141, 419–430.PubMedCrossRefGoogle Scholar
  9. 9.
    Nogales, E., Wolf, S. G., and Downing, K. H. (1998) Structure of the u13 tubulin dimer by electron crystallography. Nature 391, 199–203.PubMedCrossRefGoogle Scholar
  10. 10.
    Mandelkow, E. and Hoenger, A. (1999) Structures of kinesin and kinesin-microtubule interactions. Curr. Opin. Cell Biol. 11, 34–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Nogales, E., Whittaker, M., Milligan, R. A., and Downing, K. H. (1999) Highresolution model of the microtubule. Cell 96, 79–88.PubMedCrossRefGoogle Scholar
  12. 12.
    Sosa, H., Dias, D. P., Hoenger, A., Whittaker, M., Wilson-Kubalek, E., Sablin, E., et al. (1997) A model for the microtubule-Ned motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90, 217–224.PubMedCrossRefGoogle Scholar
  13. 13.
    Wade, R. H., Chrétien, D., and Job, D. (1990) Characterization of microtubule protofilament numbers; how does the surface lattice accommodate? J. Mol. Biol. 212, 775–786.PubMedCrossRefGoogle Scholar
  14. 14.
    Song, Y. H. and Mandelkow, E. (1995) The anatomy of flagellar microtubules: polarity, seam, junctions, and lattice. J. Cell Biol. 128, 81–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Sosa, H. and Milligan R. A. (1996) Three-dimensional structure of ncd decorated microtubules obtained by a back-projection method. J. Mol. Biol. 260, 743–755.PubMedCrossRefGoogle Scholar
  16. 16.
    Baker, T. S. and Johnson, J. E. (1996) Low resolution meets high: towards a resolution continuum from cells to atoms. Curr. Opin. Struct. Biol. 6, 585–594.PubMedCrossRefGoogle Scholar
  17. 17.
    Wriggers, W., Milligan, R. A., Schulten, K., and McGammon, J. A. (1998) Selforganizing neural networks bridge the biomolecular resolution gap. J. Mol. Biol. 284, 1247–1254.PubMedCrossRefGoogle Scholar
  18. 18.
    Wriggers, W., Milligan, R. A., and MeGammon, J. A. (2000?) Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195.CrossRefGoogle Scholar
  19. 19.
    Hyman, A., Drechsel, D., Kellog, D., Salser, S., Sawin, K., Steffen, P., et al. (1991) Preparation of modified tubulins. Methods Enzymol. 196, 478–485.PubMedCrossRefGoogle Scholar
  20. 20.
    Ray, S., Wolf, S. G., Howard, J., and Downing, K. H. (1995) Kinesin does not support the motility of Zn-macrotubes. Cell Motil. Cytoskel. 30, 146–152.CrossRefGoogle Scholar
  21. 21.
    Leberman, R. (1965) Use of uranyl formate as a negative stain. J. Mol. Biol. 13, 606–611.PubMedCrossRefGoogle Scholar
  22. 22.
    Glaeser, R. M. and Taylor, K. A. (1978) Radiation damage relative to transmission electron microscopy of biological specimens at low temperature. J. Microsc. 112, 127–138.PubMedGoogle Scholar
  23. 23.
    Van Heel, M., Harauz, G., and Orlova, E. (1996) A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Whittaker, M., Carragher, B. O., and Milligan, R. A. (1995) PHOELIX: a package for semi-automated helical reconstruction. Ultramicroscopy 58, 245–259.PubMedCrossRefGoogle Scholar
  25. 25.
    Schroeter, J. P. and Bretaudiere, J.-P. (1996) SUPRIM: Easily modified image processing software. J. Struct. Biol. 116, 131–137.PubMedCrossRefGoogle Scholar
  26. 26.
    Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929.PubMedCrossRefGoogle Scholar
  27. 27.
    Lepault, J. and Leonard, K. (1985) Three-dimensional visualization of unstained, frozen-hydrated extended tails of bacteriophage T4. J. Mol. Biol. 182, 431–441.PubMedCrossRefGoogle Scholar
  28. 28.
    Aebi U., Fowler W. E., Buhle E. L., and Smith, P. R. (1984) Microscopy and image processing applied to the study of protein structure and protein-protein interaction. J. Ultrastruct. Res. 88, 143–176.PubMedCrossRefGoogle Scholar
  29. 29.
    Hoenger, A. and Aebi, U. (1996) 3-D reconstruction from ice-embedded and negatively stained biomacromolecular assemblies: a critical comparison. J. Struct. Biol. 117, 99–116.CrossRefGoogle Scholar
  30. 30.
    Safer, D. Bolinger, L., and Leigh, J. S. (1986) Undeca-gold clusters for site specific labeling of biological macromolecules. J. Inorg. Biochem. 26, 77–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Woehlke, G., Ruby, A. K., Hart, C. L., Ly, B., Hom-Booher, N., and Vale, R. D. (1997) Microtubule interaction site of the kinesin motor. Cell 90, 207–216.PubMedCrossRefGoogle Scholar
  32. 32.
    Alonso, M. C., Vandamme, J., Vandekerckhove, J., and Cross, R. (1998) Proteolytic mapping of kinesinlNcd-microtubule interface: nucleotide-dependent conformational-changes in the hoops L8 and L12. EMBO J. 17, 945–951.PubMedCrossRefGoogle Scholar
  33. 33.
    Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119.Google Scholar
  34. 34.
    Cyrklaff, M., Adrian M., and Dubochet, J. (1990) Evaporation during preparation of unsupported thin vitrified aqueous layers for cryo-electron microscopy. J. Electron Microsc. Technol. 16, 351–355.CrossRefGoogle Scholar
  35. 35.
    Trachtenberg, S. (1998) A fast-freezing device with a retractable environmental chamber suitable for kinetic cryo-electron microscopy studies. J. Struct. Biol. 123, 45–55.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Fabienne Beuron
    • 1
  • Andreas Hoenger
    • 2
  1. 1.Imperial Cancer Research FundLondonUK
  2. 2.Structure Programme, European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations