Photoacoustic and Photothermal Detection of the Plant Hormone Ethylene

  • Laurentius A. C. J. Voesenek
  • Frans J.M. Harren
  • Hugo S. M. de Vries
  • Cor A. Sikkens
  • Sacco te Lintel Hekkert
  • Cornelis W. P. M. Blom
Part of the Methods in Molecular Biology™ book series (MIMB, volume 141)


The hydrocarbon ethylene (C2H4) is a plant hormone that plays an important role in the regulation of many environmentally and developmentally induced processes, such as stress resistance, seed germination, fruit ripening, senescence, and abscission (1). All tissue types and probably all cells of higher plants produce and liberate ethylene (2). Many lower plants, such as liverworts, mosses, ferns, lycopods, and horse tails, also are producers of ethylene, although the biosynthetic route seems to be different (2,3). Tremendous progress has been achieved during the last two decades in the biochemical and molecular characterization of the biosynthetic pathway for ethylene in higher plants (4,5).


Ethylene Production Laser Line Discharge Tube Photoacoustic Spectroscopy Photoacoustic Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abeles, F. B., Morgan, P. W., and Saltveit, M. E., Jr. (1992) Ethylene in Plant Biology. Academic Press, London, UK.Google Scholar
  2. 2.
    Osborne, D. J. (1989) The control role of ethylene in plant growth and development, in Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants (Clijsters, H., de Proft, M., Marcelle, R., and van Poucke, M., eds.) Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1–11.Google Scholar
  3. 3.
    Osborne, D. J., Walters, J., Milborrow, B. V., Norville, A., and Stange, L. M. C. (1996) Evidence for a non-ACC ethylene biosynthesis pathway in lower plants. Phytochemistry 42, pp51–60.CrossRefGoogle Scholar
  4. 4.
    Yang, S. F. and Hoffman N. E. (1984) Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35, 155–189.CrossRefGoogle Scholar
  5. 5.
    Kende, H. (1993) Ethylene biosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44, 283–307.CrossRefGoogle Scholar
  6. 6.
    Fluhr, R. and Mattoo, A. K. (1996) Ethylene: biosynthesis and perception. Crit. Rev. Plant Sci. 15, 479–523.Google Scholar
  7. 7.
    Martin, M. N., Cohen, J. D., and Saftner, R. A. (1995) A new 1-aminocyclopropane-1-carboxylic acid-conjugating activity in tomato fruit. Plant Physiol. 109, 917–926.PubMedCrossRefGoogle Scholar
  8. 8.
    Voesenek, L. A. C. J., Banga, M., Thier, R. H., Mudde, C. M., Harren, F. J. M., Barendse, G. W. M., and Blom, C. W. P. M. (1993) Submergence-induced ethylene synthesis, entrapment, and growth in two plant species with contrasting flooding resistances. Plant Physiol. 103, 783–791.PubMedGoogle Scholar
  9. 9.
    Visser, W. J. W., Nabben, R. H. M., Blom, C. W. P. M., and Voesenek, L. A. C. J. (1997) Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant Cell Environ. 20, 647–653.CrossRefGoogle Scholar
  10. 10.
    Hall, M. A. (1991) Ethylene metabolism, in The Plant Hormone Ethylene Mattoo, A. K. and Suttle, J. C., eds.) CRC, Boca Raton, FL, 65–80.Google Scholar
  11. 11.
    Wilkinson, J. Q., Lanahan, M. B., Yen, H. C., Giovannoni, J. J., and Klee, H. J. (1995) An ethylene-inducible component of signal trans duction encoded by Never-ripe. Science 270, 1807–1809.PubMedCrossRefGoogle Scholar
  12. 12.
    Payton, S., Fray, R. G., Brown, S., and Grierson, D. (1996) Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission. Plant Mol. Biol. 31, 1227–1231.PubMedCrossRefGoogle Scholar
  13. 13.
    Vriezen, W. H., Van Rijn, C. P. E., Voesenek, L. A. C. J., and Mariani, C. (1997) A homologue of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J. 11, 1265–1271.PubMedCrossRefGoogle Scholar
  14. 14.
    Gane, R. (1934) Production of ethylene by some ripening fruit. Nature 134, 1008.CrossRefGoogle Scholar
  15. 15.
    Abeles, F. B. (1973) Ethylene in Plant Biology. Academic, New York.Google Scholar
  16. 16.
    Burg, S. P. and Stolwijk, J. A. J. (1959) A highly sensitive katharometer and its application to the measurement of ethylene and other gases of biological importance. J. Biochem. Microbiol. Technol. Eng. 1, 245–259.CrossRefGoogle Scholar
  17. 17.
    Huelin, F. E. and Kennett, B. H. (1959) Nature of the olefins produced by apples. Nature 184, 996.CrossRefGoogle Scholar
  18. 18.
    Bassi, P. K. and Spencer, M. S. (1985) Methods for quantification of ethylene produced by plants, in Gases in Plant and Microbial Cells (Linskens, H. F. and Jackson, J. F., eds.) Springer-Verlag, Berlin, pp.309–321.Google Scholar
  19. 19.
    Brailsford, R. W., Voesenek, L. A. C. J., Blom, C. W. P. M., Smith, A. R., Hall, M. A., and Jackson, M. B. (1993) Enhanced ethylene production by primary roots of Zea mays L. in response to sub-ambient partial pressures of oxygen. Plant Cell Environ. 16, 1071–1080.CrossRefGoogle Scholar
  20. 20.
    Morgan, P. W., He, C., De Greef, J. A., and De Proft, M. P. (1990) Does water deficit stress promote ethylene synthesis by intact plants? Plant Physiol. 94, 1616–1624.PubMedCrossRefGoogle Scholar
  21. 21.
    De Greef, J. A. and de Proft, M. (1978) Kinetic measurements of small ethylene changes in an open system designed for plant physiological studies. Physiol. Plant. 42, 79–84.CrossRefGoogle Scholar
  22. 22.
    Voesenek, L. A. C. J., Banga, M., Rijnders, J. H. G. M., Visser, E. J. W., Harren, F. J. M., Brailsford, R. W., Jackson, M. B., and Blom, C. W. P. M. (1997) Laser-driven photoacoustic spectroscopy: what we can do with it in flooding research. Ann. Botany 79(suppl A), 57–65.Google Scholar
  23. 23.
    Petruzzelli, L, Harren, F. J. M., and Reuss, J. (1994) Patterns of C2H4 production during germination and seedling growth of pea and wheat as indicated by a laser-driven photoacoustic system. Environ. Exp. Bot. 34, 55–61.CrossRefGoogle Scholar
  24. 24.
    Thuring, J. W. J. F., Harren, F. J. M., Nefkens, G. H. L., Reuss, J., Titulaer, G. T. M., De Vries, H. S. M., and Zwanenburg, B. (1994) Ethene production by seeds of Striga hermonthica-induced by germination stimulants, in Biology and Management of Orobanche (Pieterse, A. H., Verkleij, J. A. C., and ter Borg, S. J., eds.) Royal Tropical Institute, Amsterdam, The Netherlands, pp. 225–236.Google Scholar
  25. 25.
    Woltering, E. J., Harren, F., and Boerrigter, H. A. M (1988) Use of a laser driven photoacoustic detection system for measurements of ethylene production in Cymbidium flowers. Plant Physiol. 88, 506–510.PubMedCrossRefGoogle Scholar
  26. 26.
    Woltering, E. J. and Harren, F. (1989) Role of rostellum desiccation in emasculation induced phenomena in orchid flowers. J. Exp. Bot. 40, 209–212.CrossRefGoogle Scholar
  27. 27.
    Visser, E. J. W., Bögemann, G. M., Blom, C. W. P. M., and Voesenek, L. A. C. J. (1996) Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots. J. Exp.Bot. 47, 403–410.CrossRefGoogle Scholar
  28. 28.
    Voesenek, L. A. C. J., Harren, F. J. M., Bögemann, G. M., Blom, C. W. P. M., and Reuss, J. (1990) Ethylene production and petiole growth in Rumex plants induced by soil waterlogging: The application of a continuous flow system and a laser-driven intracavity photoacoustic detection system. Plant Physiol. 94, 1071–1077.PubMedCrossRefGoogle Scholar
  29. 29.
    Summers, J. E., Voesenek, L. A. C. J., Blom, C. W. P. M., Lewis, M. J., and Jackson, M. B. (1996) Potamogeton pectinatus is constitutively incapable of synthesizing ethylene and lacks 1-aminocyclopropane-1-carboxylic acid oxidase. Plant Physiol. 111, 901–908.PubMedGoogle Scholar
  30. 30.
    De Vries, H. S. M., Harren, F. J. M., Voesenek, L. A. C. J., Blom, C. W. P. M., Woltering, E. J., van der Valk, H. C. P. M., and Reuss, J. (1995) Investigation of local ethylene emission from intact cherry tomatoes by means of photothermal deflection and photoacoustic detection. Plant Physiol. 107, 1371–1377.PubMedGoogle Scholar
  31. 31.
    De Vries, H. S. M., Harren, F. J. M., and Reuss, J. (1995) In situ, realtime monitoring of wound-induced ethylene in cherry tomatoes by two infrared laser-driven systems. Post-Harvest Biol. Technol. 6, 275–285.CrossRefGoogle Scholar
  32. 32.
    De Vries, H. S. M. (1996) Non-intrusive fruit and plant analysis by laser photothermal measurements of ethylene emission, in Fruit and Nut Analyses (Linskens, H. F.,ed.) Springer Verlag, Heidelberg, Germany, pp. 1–18.Google Scholar
  33. 33.
    De Vries, H. S. M., Wasono, M. A. J., Harren, F. J. M., Woltering, E. J., van der Valk, H. C. P. M., and Reuss, J. (1996) Ethylene and CO2 emission rates and pathways in harvested fruits investigated, in situ, by laser photothermal deflection and photoacoustic techniques. Post-Harvest Biol. Technol. 8, 110.Google Scholar
  34. 34.
    Bell, A. G. (1880) On the production and reproduction of sound by light. Am. J. Sci. 20, 305–324.Google Scholar
  35. 35.
    Kreuzer, L. B. (1971) Ultra low gas concentration infrared absorption spectroscopy. J. Appl. Phys. 42, 2934–2943.CrossRefGoogle Scholar
  36. 36.
    Harren, F. J. M., Bijnen, F. G. C., Reuss, J., Voesenek, L. A. C. J., and Blom, C. W. P. M. (1990), Sensitive intracavity photoacoustic measurements with a CO2 waveguide laser. Appl. Phys. B 50, 137–144.CrossRefGoogle Scholar
  37. 37.
    Harren, F. J. M., Reuss, J., Woltering, E. J., and Bicanic, D. D. (1990) Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below the ppb level. Appl. Spectr. 44, 1360–1367.CrossRefGoogle Scholar
  38. 38.
    Jackson, W. B., Amer, N. M., Boccara, A. C., and Fournier, D. (1981) Photothermal deflection spectroscopy and detection. Appl. Opt. 20, 1333–1344.PubMedCrossRefGoogle Scholar
  39. 39.
    De Vries, H. S. M., Dam, N., van Lieshout, M. R., Sikkens, C., Harren, F. J. M., and Reuss, J. (1995) An on-line non-intrusive trace gas detector based on laser photothermal deflection. Rev. Sci. Instr. 66, 4655–4664.CrossRefGoogle Scholar
  40. 40.
    Brewer, R. J., Bruce, C. W., and Mater, J. L. (1982) Opto-acoustic spectroscopy of C2H4 at the 9 and 10 micrometer CO2 laser wavelengths. Appl. Optics 21, 4092–4100.CrossRefGoogle Scholar
  41. 41.
    Rooth, R. A., Verhage, A. J. L., and Wouters, L. W. (1990) Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide. Appl. Optics 29, 3643–3653.CrossRefGoogle Scholar
  42. 42.
    Rothman, L. S., Gamache, R. R., Goldman, A., Brown, L. R., Toth, R. A., Pickett, H. M., Poynter, R. L., Flaud, J. M., CamyPeret, C., Barbe, A., Husson, N., Rinsland, C. P., and Smith, A. H. (1987) The HITRAN Database, 1986 edition. Appl. Optics 26, 4058–4097.CrossRefGoogle Scholar
  43. 43.
    Ryan, J. S., Hubert, M. H., and Crane, R. A. (1983) Water vapor absorption at isotopic CO2 laser wavelengths. Appl. Optics 22, 711–717.CrossRefGoogle Scholar
  44. 44.
    Loper, G. L., O’Neal, M. A., and Gelbwachs, J. A. (1983) Water vapor continuum CO2 laser absorption spectra between 27°C and 10°C. Appl. Optics 22, 3701–3710.CrossRefGoogle Scholar
  45. 45.
    Bijnen, F. G. C., De Vries, H. S. M., Harren, F. J. M., and Reuss, J. (1994) Cockroaches and tomatoes investigated by laser photoacoustics. J. Phys. IV C7, 435–443.Google Scholar
  46. 46.
    Harren, F., Reuss, J. (1997) Photoacoustic spectroscopy in, Encyclopedia of Applied Physics (Trigg, G. L., ed.) VCH Publishers, Weinheim, Germany, pp. 413–435.Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Laurentius A. C. J. Voesenek
    • 1
  • Frans J.M. Harren
    • 2
  • Hugo S. M. de Vries
    • 3
  • Cor A. Sikkens
    • 4
  • Sacco te Lintel Hekkert
    • 5
  • Cornelis W. P. M. Blom
  1. 1.Plant EcophysiologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Department of Molecular and Laser PhysicsUniversity of NijmegenNijmegenThe Netherlands
  3. 3.ATO-DLOWageningenThe Netherlands
  4. 4.Department of Molecular and Laser PhysicsUniversity of NijmegenNijmegenThe Netherlands
  5. 5.Department of Molecular and Laser PhysicsUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations