Skip to main content

Pax3 and Vertebrate Development

  • Protocol
Developmental Biology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 137))

Abstract

Pax3, a transcription factor expressed in the developing embryo, is a critical factor for the proper formation of the mammalian nervous, cardiovascular, and muscular systems. In the mouse, spontaneous mutations in Pax3 resulting in complete loss of function have provided important models for the study of neural tube defects, congenital cardiac diseases affecting the outflow tract of the heart, and for the elucidation of the genetic pathways regulating myogenesis. In humans, haploinsufficiency of PAX3 results in deafness, pigmentation defects, and other neural crest-related abnormalities as well as variable-limb myopathy. An impressive array of genetic and molecular analyses have been employed in order to understand the function of Pax3, and these will be the focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Re_erences

  1. Walther, C., Guenet, J. L., Simon, D., Deutsch, U., Jostes, B., Goulding, M. D., et al. (1991) Pax: a murine multigene family of paired box-containing genes. Genomics 11, 424–434.

    Article  PubMed  CAS  Google Scholar 

  2. Dahl, E., Koseki, H., and Balling, R. (1997) Pax genes and organogenesis. Bioessays 19, 755–765.

    Article  PubMed  CAS  Google Scholar 

  3. Bopp, D., Jamet, E., Baumgartner, S., Burri, M., and Noll, M. (1989) Isolation of two tissuespecific Drosophila paired box genes, Pox meso and Pox neuro. EMBO J. 8(11), 3447–3457.

    PubMed  CAS  Google Scholar 

  4. Quiring, R., Walldorf, U., Kloter, U., and Gehring, W. J. (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and aniridia in humans. Science 265, 785–788.

    Article  PubMed  CAS  Google Scholar 

  5. Chisholm, A. D. and Horvitz, H. R. (1995) Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-3. Nature 377, 52–55.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang, Y. and Emmons, S. W. (1995) Specification of sense-organ identity by a Caenorhabditis elegans Pax-6 homologue. Nature 377, 55–59.

    Article  PubMed  CAS  Google Scholar 

  7. Czerny, T., Schaffner, G., and Busslinger, M. (1993) DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev. 7, 2048–2061.

    Article  PubMed  CAS  Google Scholar 

  8. Epstein, J. A., Glaser, T., Cai, J., Jepeal, L., Walton, D. S., and Maas, R. L. (1994) Two independent and interactive DNA binding subdomains of the PAX6 paired domain are regulated by alternative splicing. Genes Dev. 8, 2022–2034.

    Article  PubMed  CAS  Google Scholar 

  9. Xu, W., Rould, M. A., Jun, S., Desplan, C., and Pabo, C. O. (1995) Crystal structure of a paired domain-DNA complex at 2. 5 A resolution reveals structural basis for Pax developmental mutations. Cell 80, 639–650.

    Article  PubMed  CAS  Google Scholar 

  10. Halder, G., Callaerts, P., and Gehring, W. J. (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792.

    Article  PubMed  CAS  Google Scholar 

  11. Glaser, T., Walton, D. S., and Maas, R. L. (1992) Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat. Genet. 2, 232–239.

    Article  PubMed  CAS  Google Scholar 

  12. Ton, C. C. T., et al. (1991) Positional cloning and characterization of a paired box-and homeobox-containing gene from the aniridia region. Cell 67, 1059–1074.

    Article  PubMed  CAS  Google Scholar 

  13. Auerbach, R. (1954) Analysis of the developmental effects of a lethal mutation in the house mouse. J. Exper. Zool. 127, 305–329.

    Article  Google Scholar 

  14. Epstein, D. J., Vekemans, M., and Gros, P. (1991) Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67, 767–774.

    Article  PubMed  CAS  Google Scholar 

  15. Epstein, D. J., Vogan, K. J., Trasler, D. G., and Gros, P. (1993) A mutation within intron 3 of the Pax-3 gene produces aberrantly spliced mRNA transcripts in the splotch (Sp) mouse mutant. Proc. Natl. Acad. Sci. USA 90, 532–536.

    Article  PubMed  CAS  Google Scholar 

  16. Goulding, M. D., Chalepakis, G., Deutsch, U., Erselius, J. R., and Gruss, P. (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J. 10, 1135–1147.

    PubMed  CAS  Google Scholar 

  17. Baldwin, C. T., Hoth, C. F., Amos, J. A., da Silva, E. O., and Milunsky, A. (1992) An exonic mutation in the HuP2 paired domain gene causes Waardenburg’s syndrome. Nature 355, 637–638.

    Article  PubMed  CAS  Google Scholar 

  18. Tassabehji, M., Read, A. P., Newton, V. E., Harris, R., Balling, R., Gruss, P., and Strachan, T. (1992) Waardenburg’s syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636.

    Article  PubMed  CAS  Google Scholar 

  19. Waardenburg, P. J. (1951) A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness. Am. J. Hum. Genet. 3, 195–253.

    PubMed  CAS  Google Scholar 

  20. Read, A. P. and Newton, V. E. (1997) Waardenburg syndrome. J. Med. Genet. 34, 656–665.

    Article  PubMed  CAS  Google Scholar 

  21. Hodgkinson, C. A., Moore, K. J., Nakayama, A., Steingrimsson, E., Copeland, N. G., Jenkins, N. A., and Arnheiter, H. (1993) Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74(2), 395–404.

    Article  PubMed  CAS  Google Scholar 

  22. Tassabehji, M., Newton, V., and Read, A. (1994) Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat. Genet. 8, 251–255.

    Article  PubMed  CAS  Google Scholar 

  23. Zlotogora, J., Lerer, I., Bar-David, S., Ergaz, Z., and Abeliovich, D. (1995) Homozygosity for Waardenburg syndrome. Am. J. Hum. Genet. 56, 1173–1178.

    PubMed  CAS  Google Scholar 

  24. Pantke, O. A. and Cohen, M. M. (1971) The Waardenburg syndrome. Birth Defects 7, 147–152.

    PubMed  CAS  Google Scholar 

  25. da-Silva, E. O. (1991) Waardenburg I syndrome: a clinical and genetic study of two large Brazilian kindreds, and literature review. Am. J. Med. Genet. 40, 65–74.

    Article  Google Scholar 

  26. Farrer, L. A., et al. (1994) Locus heterogeneity for Waardenburg syndrome is predictive of clinical subtypes. Am. J. Hum. Genet. 55, 728–737.

    PubMed  CAS  Google Scholar 

  27. Pandya, A., et al. (1996) Phenotypic variation in Waardenburg syndrome: mutational heterogeneity, modifier genes or polygenic background? Hum. Mol. Genet. 5, 497–502.

    Article  PubMed  CAS  Google Scholar 

  28. Asher, J. H. J., Harrison, R. W., Morell, R., Carey, M. L., and Friedman, T. B. (1996) Effects of Pax3 modifier genes on craniofacial morphology, pigmentation, and viability: a murine model of Waardenburg syndrome variation. Genomics 34, 285–298.

    Article  PubMed  CAS  Google Scholar 

  29. Kioussi, C., Gross, M. K., and Gruss, P. (1995) Pax3: a paired domain gene as a regulator in PNS myelination. Neuron 15, 553–562.

    Article  PubMed  CAS  Google Scholar 

  30. Tremblay, P., Kessel, M., and Gruss, P. (1995) A transgenic neuroanatomical marker identifies cranial neural crest deficiencies associated with the Pax3 mutant Splotch. Dev. Biol. 171, 317–329.

    Article  PubMed  CAS  Google Scholar 

  31. Mathieu, M., Bourges, E., Caron, F., and Piussan, C. (1990) Waardenburg’s syndrome and severe cyanotic cardiopathy. Arch. Fr. Pediatr. 47(9), 657–659.

    PubMed  CAS  Google Scholar 

  32. Franz, T. (1989) Persistent truncus arteriosus in the Splotch mutant mouse. Anat. Embryol. 180(5), 457–464.

    Article  PubMed  CAS  Google Scholar 

  33. Conway, S. J., Godt, R. E., Hatcher, C. J., Leatherbury, L., Zolotouchnikov, V. V., Brotto, M. A. P., et al. (1997) Neural crest is involved in development of abnormal myocardial function. J. Mol. Cell. Cardiol. 29, 2675–2685.

    Article  PubMed  CAS  Google Scholar 

  34. Kirby, M. L., Gale, T. F., and Stewart, D. E. (1983) Neural crest cells contribute to aorticopulmonary septation. Science 220, 1059–1061.

    Article  PubMed  CAS  Google Scholar 

  35. Driscoll, D. A. (1994) Genetic basis of DiGeorge and velocardio-facial syndromes. Curr. Opin. Pediatr.} 6, 702–706.

    Article  PubMed  CAS  Google Scholar 

  36. Gong, W., Emanuel, B. S., Collins, J., Kim, D. H., Wang, Z., Chen, F., et al. (1996) A transcription map of the DiGeorge and velocardio-facial syndrome minimal critical region on 22q11. Hum. Mol. Genet. 5, 789–800.

    Article  PubMed  CAS  Google Scholar 

  37. Galili, N., et al. (1997) A region of mouse chromosome 16 is syntenic to the DiGeorge, velocardiofacial syndrome minimal critical region. Genome Res. 7, 17–26.

    Article  PubMed  CAS  Google Scholar 

  38. Noden, D., Poelmann, R., and Gittenberger-de Groot, A. (1995) Cell origins and tissue boundaries during outflow tract development. Trends Cardiovasc. Med. 5, 69–75.

    Article  PubMed  CAS  Google Scholar 

  39. Goulding, M., Lumsden, A., and Paquette, A. J. (1994) Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120, 957–971.

    PubMed  CAS  Google Scholar 

  40. Williams, B. A. and Ordahl, C. P. (1994) Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120, 785–796.

    PubMed  CAS  Google Scholar 

  41. Bober, E.,. Franz, T., Arnold, H., Gruss, P., and Tremblay, P. (1994) Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120, 603–612.

    PubMed  CAS  Google Scholar 

  42. Daston, G., Lamar, E., Olivier, M., and Goulding, M. (1996) Pax-3 is necessary for migration but not differentiation of limb muscle precursors in the mouse. Development 122(3), 1017–1027.

    PubMed  CAS  Google Scholar 

  43. Epstein, J. A., Shapiro, D. N., Cheng, J., Lam, P. Y., and Maas, R. L. (1996) Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc. Natl. Acad. Sci. USA 93(9), 4213–4218.

    Article  PubMed  CAS  Google Scholar 

  44. Chalepakis, G. and Gruss, P. (1995) Identification of DNA recognition sequences for the Pax3 paired domain. Gene 162, 267–270.

    Article  PubMed  CAS  Google Scholar 

  45. Heymann, S., Koudrova, M., Arnold, H., Koster, M., and Braun, T. (1996) Regulation and function of SF/HGF during migration of limb muscle precursor cells in chicken. Develop. Biol. 180(2), 566–578.

    Article  PubMed  CAS  Google Scholar 

  46. Brand-Saberi, B., Muller, T. S., Wilting, J., Christ, B., and Birchmeier, C. (1996) Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb level in vivo. Develop. Biol. 179(1), 303–308.

    Article  PubMed  CAS  Google Scholar 

  47. Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A., and Birchmeier, C. (1995) Essential role for the c-met receptor in migration of myogenic precursor cells into the limb bud. Nature 376, 768–771.

    Article  PubMed  CAS  Google Scholar 

  48. Epstein, J. A., Lam, P., Jepeal, L., Maas, R. L., and Shapiro, D. N. (1995) Pax3 inhibits myogenic differentiation of cultured myoblast cells. J. Biol. Chem. 270, 11,719–11,722.

    Article  PubMed  CAS  Google Scholar 

  49. Maroto, M., Reshef, R., Munsterberg, A. E., Koester, S., Goulding, M., and Lassar, A. (1997) Ectopic Pax-3 activates myoD and myf-5 expression in embryonic mesoderm and neural tissue. Cell 89, 139–148.

    Article  PubMed  CAS  Google Scholar 

  50. Tajbakhsh, S., Rocancourt, D., Cossu, G., and Buckingham, M. (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and myf-5 act upstream of myoD. Cell 89, 127–138.

    Article  PubMed  CAS  Google Scholar 

  51. Rudnicki, M. A. and Jaenisch, R. (1995) The MyoD family of transcription factors and skeletal myogenesis. BioEssays 17, 203–209.

    Article  PubMed  CAS  Google Scholar 

  52. Kablar, B., Krastel, K., 3 Ying, C., Asakura, A., Tapscott, S. J., and Rudnicki, M. A. (1997) MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124, 4729–4738.

    PubMed  CAS  Google Scholar 

  53. Tajbakhsh, S., Rocancourt, D., and Buckingham, M. (1996) Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384(6606), 266–270.

    Article  PubMed  CAS  Google Scholar 

  54. Bernasconi, M., Remppis, A., Fredericks, W., Rauscher, F., and Schafer, B. (1996) Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc. Natl. Acad. Sci. USA 93, 13,164–13,169.

    Article  PubMed  CAS  Google Scholar 

  55. Phelan, S. A., Ito, M., and Loeken, M. R. (1997) Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes 46, 1189–1197.

    Article  PubMed  CAS  Google Scholar 

  56. Stuart, E. T., Haffner, R., Oren, M., and Gruss, P. (1995) Loss of p53 function through PAX-mediated transcriptional repression. EMBO J. 14(22), 5638–5645.

    PubMed  CAS  Google Scholar 

  57. Barr, F. G., Galili, N., Holick, J., Biegel, J. A., Rovera, G., and Emanuel, B. S. (1993) Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nature Genet. 3, 113–117.

    Article  PubMed  CAS  Google Scholar 

  58. Galili, N., Davis, R. J., Fredericks, W. J., Mukhopadhyay, S., Rauscher, F. J., III, Emanuel, B. S., et al. (1993) Fusion of a fork head domain gene to PAX3 in the solid tumor alveolar rhabdomyosarcoma. Nat. Genet. 5, 230–235.

    Article  PubMed  CAS  Google Scholar 

  59. Shapiro, D. N., Sublett, J. E., Li, B., Downing, J. R., and Naeve, C. W. (1993) Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 53, 5108–5112.

    PubMed  CAS  Google Scholar 

  60. Davis, R. J., D’Cruz, C. M., Lovell, M. A., Biegel, J. A., and Barr, F. G. (1994) Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 54(11), 2869–2872.

    PubMed  CAS  Google Scholar 

  61. Maulbecker, C. C. and Gruss, P. (1993) The oncogenic potential of Pax genes. EMBO J. 12(6), 2361–2367.

    PubMed  CAS  Google Scholar 

  62. Ayme, S. and Philip, N. (1995) Possible homozygous Waardenburg syndrome in a fetus with exencephaly. Am. J. Med. Genet. 59, 263–265.

    Article  PubMed  CAS  Google Scholar 

  63. Epstein, J. A., Song, B., Lakkis, M., and Wang, C. (1998) Tumour-specific PAX3-FRHR transcription factor, but not PAX3, activates the platelet-derived growth factor alpha receptor. Mol. Cell. Biol. 18, 4118–4130.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Epstein, J.A. (2000). Pax3 and Vertebrate Development. In: Tuan, R.S., Lo, C.W. (eds) Developmental Biology Protocols. Methods in Molecular Biology™, vol 137. Humana Press. https://doi.org/10.1385/1-59259-066-7:459

Download citation

  • DOI: https://doi.org/10.1385/1-59259-066-7:459

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-854-7

  • Online ISBN: 978-1-59259-066-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics