Skip to main content

Mesoderm Induction in Xenopus

Oocyte Expression System and Animal Cap Assay

  • Protocol
Developmental Biology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 137))

Abstract

Vertebrate mesoderm forms a diversity of tissues, including notochord, somitic muscle, pronephros, mesenchyme, and blood. In the amphibian Xenopus laevis, mesoderm arises in the equatorial region (marginal zone) of the blastula embryo in response to inducing signals produced by vegetal pole cells (1). This model of Xenopus mesoderm induction is derived from tissue recombination experiments in which vegetal pole tissue (prospective endoderm) was cocultured with animal pole tissue (prospective ectoderm) and resulted in the conversion of animal pole tissue into mesoderm (2). Therefore, vegetal pole cells of the cleavage embryo secrete factors that can redirect animal pole cells from ectodermal fates to mesodermal fates. These studies identified the source of mesoderm-inducing signals (vegetal pole) and established the animal pole explant as a responsive tissue useful for identifying mesoderm-inducing factors (35).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessler, D. S. and Melton, D. A. (1994) Vertebrate embryonic induction: mesodermal and neural patterning. Science 266, 596–604.

    Article  PubMed  CAS  Google Scholar 

  2. Nieuwkoop, P. D. (1969) The formation of mesoderm in urodelean amphibians. I. Induction by the endoderm. Roux Arch. EntwMech. Org. 162, 341–373.

    Article  Google Scholar 

  3. Geithe, H. P., Asashima, M., Asahi, K. I., Born, J., Tiedemann, H., and Tiedemann, H. (1981) A vegetalizing inducing factor. Isolation and chemical properties. Biochim. Biophys. Acta 676, 350–356.

    PubMed  CAS  Google Scholar 

  4. Born, J., Geithe, H. P., and Tiedemann, H. (1972) Isolation of a vegetalizing factor. Hoppe-Seylers Z. Physiol. Chem. 353, 1075–1084.

    Article  PubMed  CAS  Google Scholar 

  5. Symes, K. and Smith, J. C. (1987) Gastrulation movements provide an early marker of mesoderm induction in Xenopus laevis. Development 101, 339–349.

    Google Scholar 

  6. Heasman, J. (1997) Patterning the Xenopus blastula. Development 124, 4179–4191.

    PubMed  CAS  Google Scholar 

  7. Nieuwkoop, P. D. and Faber, J. (1967) Normal Table of Xenopus laevis (Daudin), 2nd ed., North Holland Publishing, Amsterdam, The Netherlands.

    Google Scholar 

  8. Gurdon, J. B., Lane, C. D., Woodland, H. R., and Marbaix, G. (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233, 177–182.

    Article  PubMed  CAS  Google Scholar 

  9. Kessler, D. S. and Melton, D. A. (1995) Induction of dorsal mesoderm by soluble, mature Vg1 protein. Development 121, 2155–2164.

    PubMed  CAS  Google Scholar 

  10. Kelly, G. M., Eib, D. W., and Moon, R. T. (1991) Histological preparation of Xenopus laevis oocytes and embryos, in Methods in Cell Biology, Vol. 36 (Kay, B. K. and Peng, H. B., eds.), Academic, San Diego, CA,. 389–417.

    Google Scholar 

  11. Hemmati-Brivanlou, A. and Harland, R. M. (1989) Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos. Development 106, 611–617.

    Google Scholar 

  12. Bolce, M. E., Hemmati-Brivanlou, A., Kushner, P. D., and Harland, R. M. (1992) Ventral ectoderm of Xenopus forms neural tissue, including hindbrain, in response to activin. Development 115, 681–688.

    PubMed  CAS  Google Scholar 

  13. Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D., and Herrmann, B. G. (1991) Expression of a Xenopus homolog of Brachyury (T) in an immediate-early response to mesoderm induction. Cell 67, 79–87.

    Article  PubMed  CAS  Google Scholar 

  14. Wilson, P. A. and Melton, D. A. (1994) Mesodermal patterning by an inducer gradient depends on secondary cell-cell communication. Curr. Biol. 4, 676–686.

    Article  PubMed  CAS  Google Scholar 

  15. Harland, R. M. (1991) In situ hybridization: an improved whole mount method for Xenopus embryos, in Methods in Cell Biology, Vol. 36 (Kay, B. K. and Peng, H. B., eds.), Academic, San Diego, CA,. 675–685.

    Google Scholar 

  16. Jones, E. A. and Woodland, H. R. (1987) The development of animal cap cells in Xenopus: a measure of the start of animal cap competence to form mesoderm. Development 101, 557–563.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Yao, J., Kessler, D.S. (2000). Mesoderm Induction in Xenopus. In: Tuan, R.S., Lo, C.W. (eds) Developmental Biology Protocols. Methods in Molecular Biology™, vol 137. Humana Press. https://doi.org/10.1385/1-59259-066-7:169

Download citation

  • DOI: https://doi.org/10.1385/1-59259-066-7:169

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-854-7

  • Online ISBN: 978-1-59259-066-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics