Skip to main content

Visualization of the Expression of Green Fluorescent Protein (GFP)-Linked Proteins

  • Protocol
Developmental Biology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 137))

Abstract

One of the most remarkable and unexpected advances in cell biology in the 1990s has been the introduction of expression plasmids containing a wide variety of cDNAs ligated to the cDNA of the protein responsible for the bioluminescence of the jellyfish, Aequoria victoria (1, 2). The original expression plasmid for this jellyfish protein, green fluorescent protein (GFP) yielded a low level of fluorescence. However, through mutagenesis, enhanced GFPs have been produced that are about 35 times brighter than the wildtype GFPs (3, 4). There are now blue and yellow fluorescent proteins and other colors may soon be available. The size of green fluorescent protein, about 28 kD (5,6), creates a large fluorescent tag in comparison to the 500 Dalton fluorescent dyes that have been coupled to purified proteins; nevertheless, GFP does not seem to interfere with most interactions of its linked protein. There are cases, however, where the placement of the large GFP probe has interfered with the nearby domains of proteins. For example, coupling GFP to the N-terminal region of alpha-actinin, near the actin-binding domain resulted in a GFP probe that could not bind actin, whereas GFP linked to the C-terminus of alpha-actinin resulted in a probe that readily bound actin filaments (7). An alternate approach to eliminating interference by GFP is to introduce a linker of several amino acids between the GFP probe and the protein (8). The expression of GFP-linked proteins has been particularly advantageous for following proteins whose low abundance or solubility properties make them unsuitable for microinjection into living cells. The cDNAs for a number of abundant cytoskeletal proteins have also been

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Cormier, M. J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233.

    Article  PubMed  CAS  Google Scholar 

  2. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green Fluorescent Protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  3. Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12,50112,504.

    Article  Google Scholar 

  4. Heim R. Cubitt A. B. and Tsien R. Y. 1995 Improved green fluorescence. Nature 373 663–664

    Article  PubMed  CAS  Google Scholar 

  5. Yang, F., Moss, L. G., and Phillips, G. N. (1996) The molecular structure of Green Fluorescent Protein. Nature Biotechnol. 14, 1246–1251.

    Article  CAS  Google Scholar 

  6. Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and Remington, S. J. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395.

    Article  PubMed  CAS  Google Scholar 

  7. Dabiri, G. A., Turnacioglu, K. K., Sanger, J. M., and Sanger, J. W. (1997) Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc. Natl. Acad. Sci. USA 94, 9493–9498.

    Article  PubMed  CAS  Google Scholar 

  8. Doyle, T. and Botstein, D. (1996) Movement of yeast cortical actin cytoskeleton in vivo. Proc. Natl. Acad. Sci. USA 93, 3886–3891.

    Article  PubMed  CAS  Google Scholar 

  9. Moores, S. L., Sabry, J. H., and Spudich, J. A. (1996) Myosin dynamics in live Dictyostelium cells. Proc. Natl. Acad. Sci. USA 93, 443–446.

    Article  PubMed  CAS  Google Scholar 

  10. Gerisch, G., Albrecht, R., Heizer, C., Hodgkinson, S., and Maniak, M. (1995) Chemoattractant-controlled accumulation of coronin at the leading edge of Dictyostelium cells monitored. Curr. Biol. 5, 1280–1285}.

    Article  PubMed  CAS  Google Scholar 

  11. Lazarides, E. and Burridge, K. (1975) Alpha-actinin: immunofluorescent localization of a muscle structural protein in non-muscle cells. Cell 6, 289–298.

    Article  PubMed  CAS  Google Scholar 

  12. Weber, M., Moller, K., Welzeck, M., and Schorr, J. (1995) Effects of lipopolysaccharide on transfection efficiency in eukaryotic cells. BioTechniques 19, 930–940.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ayoob, J.C., Sanger, J.M., Sanger, J.W. (2000). Visualization of the Expression of Green Fluorescent Protein (GFP)-Linked Proteins. In: Tuan, R.S., Lo, C.W. (eds) Developmental Biology Protocols. Methods in Molecular Biology™, vol 137. Humana Press. https://doi.org/10.1385/1-59259-066-7:153

Download citation

  • DOI: https://doi.org/10.1385/1-59259-066-7:153

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-854-7

  • Online ISBN: 978-1-59259-066-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics