Pax3 and Vertebrate Development

  • Jonathan A. Epstein
Part of the Methods in Molecular Biology™ book series (MIMB, volume 137)


Pax3, a transcription factor expressed in the developing embryo, is a critical factor for the proper formation of the mammalian nervous, cardiovascular, and muscular systems. In the mouse, spontaneous mutations in Pax3 resulting in complete loss of function have provided important models for the study of neural tube defects, congenital cardiac diseases affecting the outflow tract of the heart, and for the elucidation of the genetic pathways regulating myogenesis. In humans, haploinsufficiency of PAX3 results in deafness, pigmentation defects, and other neural crest-related abnormalities as well as variable-limb myopathy. An impressive array of genetic and molecular analyses have been employed in order to understand the function of Pax3, and these will be the focus of this review.


Outflow Tract Neural Tube Defect Neural Crest Cell Myogenic Differentiation Paired Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Walther, C., Guenet, J. L., Simon, D., Deutsch, U., Jostes, B., Goulding, M. D., et al. (1991) Pax: a murine multigene family of paired box-containing genes. Genomics 11, 424–434.PubMedCrossRefGoogle Scholar
  2. 2.
    Dahl, E., Koseki, H., and Balling, R. (1997) Pax genes and organogenesis. Bioessays 19, 755–765.PubMedCrossRefGoogle Scholar
  3. 3.
    Bopp, D., Jamet, E., Baumgartner, S., Burri, M., and Noll, M. (1989) Isolation of two tissuespecific Drosophila paired box genes, Pox meso and Pox neuro. EMBO J. 8(11), 3447–3457.PubMedGoogle Scholar
  4. 4.
    Quiring, R., Walldorf, U., Kloter, U., and Gehring, W. J. (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and aniridia in humans. Science 265, 785–788.PubMedCrossRefGoogle Scholar
  5. 5.
    Chisholm, A. D. and Horvitz, H. R. (1995) Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-3. Nature 377, 52–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang, Y. and Emmons, S. W. (1995) Specification of sense-organ identity by a Caenorhabditis elegans Pax-6 homologue. Nature 377, 55–59.PubMedCrossRefGoogle Scholar
  7. 7.
    Czerny, T., Schaffner, G., and Busslinger, M. (1993) DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev. 7, 2048–2061.PubMedCrossRefGoogle Scholar
  8. 8.
    Epstein, J. A., Glaser, T., Cai, J., Jepeal, L., Walton, D. S., and Maas, R. L. (1994) Two independent and interactive DNA binding subdomains of the PAX6 paired domain are regulated by alternative splicing. Genes Dev. 8, 2022–2034.PubMedCrossRefGoogle Scholar
  9. 9.
    Xu, W., Rould, M. A., Jun, S., Desplan, C., and Pabo, C. O. (1995) Crystal structure of a paired domain-DNA complex at 2. 5 A resolution reveals structural basis for Pax developmental mutations. Cell 80, 639–650.PubMedCrossRefGoogle Scholar
  10. 10.
    Halder, G., Callaerts, P., and Gehring, W. J. (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792.PubMedCrossRefGoogle Scholar
  11. 11.
    Glaser, T., Walton, D. S., and Maas, R. L. (1992) Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat. Genet. 2, 232–239.PubMedCrossRefGoogle Scholar
  12. 12.
    Ton, C. C. T., et al. (1991) Positional cloning and characterization of a paired box-and homeobox-containing gene from the aniridia region. Cell 67, 1059–1074.PubMedCrossRefGoogle Scholar
  13. 13.
    Auerbach, R. (1954) Analysis of the developmental effects of a lethal mutation in the house mouse. J. Exper. Zool. 127, 305–329.CrossRefGoogle Scholar
  14. 14.
    Epstein, D. J., Vekemans, M., and Gros, P. (1991) Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67, 767–774.PubMedCrossRefGoogle Scholar
  15. 15.
    Epstein, D. J., Vogan, K. J., Trasler, D. G., and Gros, P. (1993) A mutation within intron 3 of the Pax-3 gene produces aberrantly spliced mRNA transcripts in the splotch (Sp) mouse mutant. Proc. Natl. Acad. Sci. USA 90, 532–536.PubMedCrossRefGoogle Scholar
  16. 16.
    Goulding, M. D., Chalepakis, G., Deutsch, U., Erselius, J. R., and Gruss, P. (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J. 10, 1135–1147.PubMedGoogle Scholar
  17. 17.
    Baldwin, C. T., Hoth, C. F., Amos, J. A., da Silva, E. O., and Milunsky, A. (1992) An exonic mutation in the HuP2 paired domain gene causes Waardenburg’s syndrome. Nature 355, 637–638.PubMedCrossRefGoogle Scholar
  18. 18.
    Tassabehji, M., Read, A. P., Newton, V. E., Harris, R., Balling, R., Gruss, P., and Strachan, T. (1992) Waardenburg’s syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636.PubMedCrossRefGoogle Scholar
  19. 19.
    Waardenburg, P. J. (1951) A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness. Am. J. Hum. Genet. 3, 195–253.PubMedGoogle Scholar
  20. 20.
    Read, A. P. and Newton, V. E. (1997) Waardenburg syndrome. J. Med. Genet. 34, 656–665.PubMedCrossRefGoogle Scholar
  21. 21.
    Hodgkinson, C. A., Moore, K. J., Nakayama, A., Steingrimsson, E., Copeland, N. G., Jenkins, N. A., and Arnheiter, H. (1993) Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74(2), 395–404.PubMedCrossRefGoogle Scholar
  22. 22.
    Tassabehji, M., Newton, V., and Read, A. (1994) Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat. Genet. 8, 251–255.PubMedCrossRefGoogle Scholar
  23. 23.
    Zlotogora, J., Lerer, I., Bar-David, S., Ergaz, Z., and Abeliovich, D. (1995) Homozygosity for Waardenburg syndrome. Am. J. Hum. Genet. 56, 1173–1178.PubMedGoogle Scholar
  24. 24.
    Pantke, O. A. and Cohen, M. M. (1971) The Waardenburg syndrome. Birth Defects 7, 147–152.PubMedGoogle Scholar
  25. 25.
    da-Silva, E. O. (1991) Waardenburg I syndrome: a clinical and genetic study of two large Brazilian kindreds, and literature review. Am. J. Med. Genet. 40, 65–74.CrossRefGoogle Scholar
  26. 26.
    Farrer, L. A., et al. (1994) Locus heterogeneity for Waardenburg syndrome is predictive of clinical subtypes. Am. J. Hum. Genet. 55, 728–737.PubMedGoogle Scholar
  27. 27.
    Pandya, A., et al. (1996) Phenotypic variation in Waardenburg syndrome: mutational heterogeneity, modifier genes or polygenic background? Hum. Mol. Genet. 5, 497–502.PubMedCrossRefGoogle Scholar
  28. 28.
    Asher, J. H. J., Harrison, R. W., Morell, R., Carey, M. L., and Friedman, T. B. (1996) Effects of Pax3 modifier genes on craniofacial morphology, pigmentation, and viability: a murine model of Waardenburg syndrome variation. Genomics 34, 285–298.PubMedCrossRefGoogle Scholar
  29. 29.
    Kioussi, C., Gross, M. K., and Gruss, P. (1995) Pax3: a paired domain gene as a regulator in PNS myelination. Neuron 15, 553–562.PubMedCrossRefGoogle Scholar
  30. 30.
    Tremblay, P., Kessel, M., and Gruss, P. (1995) A transgenic neuroanatomical marker identifies cranial neural crest deficiencies associated with the Pax3 mutant Splotch. Dev. Biol. 171, 317–329.PubMedCrossRefGoogle Scholar
  31. 31.
    Mathieu, M., Bourges, E., Caron, F., and Piussan, C. (1990) Waardenburg’s syndrome and severe cyanotic cardiopathy. Arch. Fr. Pediatr. 47(9), 657–659.PubMedGoogle Scholar
  32. 32.
    Franz, T. (1989) Persistent truncus arteriosus in the Splotch mutant mouse. Anat. Embryol. 180(5), 457–464.PubMedCrossRefGoogle Scholar
  33. 33.
    Conway, S. J., Godt, R. E., Hatcher, C. J., Leatherbury, L., Zolotouchnikov, V. V., Brotto, M. A. P., et al. (1997) Neural crest is involved in development of abnormal myocardial function. J. Mol. Cell. Cardiol. 29, 2675–2685.PubMedCrossRefGoogle Scholar
  34. 34.
    Kirby, M. L., Gale, T. F., and Stewart, D. E. (1983) Neural crest cells contribute to aorticopulmonary septation. Science 220, 1059–1061.PubMedCrossRefGoogle Scholar
  35. 35.
    Driscoll, D. A. (1994) Genetic basis of DiGeorge and velocardio-facial syndromes. Curr. Opin. Pediatr.} 6, 702–706.PubMedCrossRefGoogle Scholar
  36. 36.
    Gong, W., Emanuel, B. S., Collins, J., Kim, D. H., Wang, Z., Chen, F., et al. (1996) A transcription map of the DiGeorge and velocardio-facial syndrome minimal critical region on 22q11. Hum. Mol. Genet. 5, 789–800.PubMedCrossRefGoogle Scholar
  37. 37.
    Galili, N., et al. (1997) A region of mouse chromosome 16 is syntenic to the DiGeorge, velocardiofacial syndrome minimal critical region. Genome Res. 7, 17–26.PubMedCrossRefGoogle Scholar
  38. 38.
    Noden, D., Poelmann, R., and Gittenberger-de Groot, A. (1995) Cell origins and tissue boundaries during outflow tract development. Trends Cardiovasc. Med. 5, 69–75.PubMedCrossRefGoogle Scholar
  39. 39.
    Goulding, M., Lumsden, A., and Paquette, A. J. (1994) Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120, 957–971.PubMedGoogle Scholar
  40. 40.
    Williams, B. A. and Ordahl, C. P. (1994) Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120, 785–796.PubMedGoogle Scholar
  41. 41.
    Bober, E.,. Franz, T., Arnold, H., Gruss, P., and Tremblay, P. (1994) Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120, 603–612.PubMedGoogle Scholar
  42. 42.
    Daston, G., Lamar, E., Olivier, M., and Goulding, M. (1996) Pax-3 is necessary for migration but not differentiation of limb muscle precursors in the mouse. Development 122(3), 1017–1027.PubMedGoogle Scholar
  43. 43.
    Epstein, J. A., Shapiro, D. N., Cheng, J., Lam, P. Y., and Maas, R. L. (1996) Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc. Natl. Acad. Sci. USA 93(9), 4213–4218.PubMedCrossRefGoogle Scholar
  44. 44.
    Chalepakis, G. and Gruss, P. (1995) Identification of DNA recognition sequences for the Pax3 paired domain. Gene 162, 267–270.PubMedCrossRefGoogle Scholar
  45. 45.
    Heymann, S., Koudrova, M., Arnold, H., Koster, M., and Braun, T. (1996) Regulation and function of SF/HGF during migration of limb muscle precursor cells in chicken. Develop. Biol. 180(2), 566–578.PubMedCrossRefGoogle Scholar
  46. 46.
    Brand-Saberi, B., Muller, T. S., Wilting, J., Christ, B., and Birchmeier, C. (1996) Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb level in vivo. Develop. Biol. 179(1), 303–308.PubMedCrossRefGoogle Scholar
  47. 47.
    Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A., and Birchmeier, C. (1995) Essential role for the c-met receptor in migration of myogenic precursor cells into the limb bud. Nature 376, 768–771.PubMedCrossRefGoogle Scholar
  48. 48.
    Epstein, J. A., Lam, P., Jepeal, L., Maas, R. L., and Shapiro, D. N. (1995) Pax3 inhibits myogenic differentiation of cultured myoblast cells. J. Biol. Chem. 270, 11,719–11,722.PubMedCrossRefGoogle Scholar
  49. 49.
    Maroto, M., Reshef, R., Munsterberg, A. E., Koester, S., Goulding, M., and Lassar, A. (1997) Ectopic Pax-3 activates myoD and myf-5 expression in embryonic mesoderm and neural tissue. Cell 89, 139–148.PubMedCrossRefGoogle Scholar
  50. 50.
    Tajbakhsh, S., Rocancourt, D., Cossu, G., and Buckingham, M. (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and myf-5 act upstream of myoD. Cell 89, 127–138.PubMedCrossRefGoogle Scholar
  51. 51.
    Rudnicki, M. A. and Jaenisch, R. (1995) The MyoD family of transcription factors and skeletal myogenesis. BioEssays 17, 203–209.PubMedCrossRefGoogle Scholar
  52. 52.
    Kablar, B., Krastel, K., 3 Ying, C., Asakura, A., Tapscott, S. J., and Rudnicki, M. A. (1997) MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124, 4729–4738.PubMedGoogle Scholar
  53. 53.
    Tajbakhsh, S., Rocancourt, D., and Buckingham, M. (1996) Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384(6606), 266–270.PubMedCrossRefGoogle Scholar
  54. 54.
    Bernasconi, M., Remppis, A., Fredericks, W., Rauscher, F., and Schafer, B. (1996) Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc. Natl. Acad. Sci. USA 93, 13,164–13,169.PubMedCrossRefGoogle Scholar
  55. 55.
    Phelan, S. A., Ito, M., and Loeken, M. R. (1997) Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes 46, 1189–1197.PubMedCrossRefGoogle Scholar
  56. 56.
    Stuart, E. T., Haffner, R., Oren, M., and Gruss, P. (1995) Loss of p53 function through PAX-mediated transcriptional repression. EMBO J. 14(22), 5638–5645.PubMedGoogle Scholar
  57. 57.
    Barr, F. G., Galili, N., Holick, J., Biegel, J. A., Rovera, G., and Emanuel, B. S. (1993) Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nature Genet. 3, 113–117.PubMedCrossRefGoogle Scholar
  58. 58.
    Galili, N., Davis, R. J., Fredericks, W. J., Mukhopadhyay, S., Rauscher, F. J., III, Emanuel, B. S., et al. (1993) Fusion of a fork head domain gene to PAX3 in the solid tumor alveolar rhabdomyosarcoma. Nat. Genet. 5, 230–235.PubMedCrossRefGoogle Scholar
  59. 59.
    Shapiro, D. N., Sublett, J. E., Li, B., Downing, J. R., and Naeve, C. W. (1993) Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 53, 5108–5112.PubMedGoogle Scholar
  60. 60.
    Davis, R. J., D’Cruz, C. M., Lovell, M. A., Biegel, J. A., and Barr, F. G. (1994) Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 54(11), 2869–2872.PubMedGoogle Scholar
  61. 61.
    Maulbecker, C. C. and Gruss, P. (1993) The oncogenic potential of Pax genes. EMBO J. 12(6), 2361–2367.PubMedGoogle Scholar
  62. 62.
    Ayme, S. and Philip, N. (1995) Possible homozygous Waardenburg syndrome in a fetus with exencephaly. Am. J. Med. Genet. 59, 263–265.PubMedCrossRefGoogle Scholar
  63. 63.
    Epstein, J. A., Song, B., Lakkis, M., and Wang, C. (1998) Tumour-specific PAX3-FRHR transcription factor, but not PAX3, activates the platelet-derived growth factor alpha receptor. Mol. Cell. Biol. 18, 4118–4130.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Jonathan A. Epstein
    • 1
  1. 1.Departments of Medicine and Cell and Developmental BiologyUniversity of PennsylvaniaPhiladelphia

Personalised recommendations