Advertisement

Biologically Based Risk Assessment Models for Developmental Toxicity

  • Christopher Lau
  • R. Woodrow Setzer
Part of the Methods in Molecular Biology™ book series (MIMB, volume 136)

Abstract

Risk assessment is a process conducted by regulatory agencies to safeguard public health from the harmful effects of natural and man-made substances. Thus, a goal of risk assessors is to provide a numerical value of exposure to these substances, below which adverse effects to human health are assumed negligible. This value, termed the reference dose (RfD) or reference concentration (RfC), is commonly derived with the aid of a dose-response model that describes the relationship between the extent of adverse effects and the exposure levels of the toxic agent. For the evaluation of developmental toxicity of an agent, the typical response endpoints include alteration of reproductive outcomes and incidence of malformations (1). In a default situation, where little is known about the agent, the RfD is calculated from

Keywords

Cleft Palate Developmental Toxicity Cleave Palate Human Health Risk Assessment Anatomical Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    U. S. Environmental Protection Agency. (1991) Guidelines for developmental toxicity risk assessment. Fed. Register 56, 63,798–63,826.Google Scholar
  2. 2.
    Crump, K. (1984) A new method for determining allowable daily intakes. Fundam. Appl. Toxicol. 4, 854–871.PubMedCrossRefGoogle Scholar
  3. 3.
    Faustman, E. M., Allen, B. C., Kavlock, R. J., and Kimmel, C. A. (1994) Dose-response assessment for developmental toxicity. I. Characterization of database and determination of the no observed adverse effect levels. Fundam. Appl. Toxicol. 23, 478–486.PubMedCrossRefGoogle Scholar
  4. 4.
    Allen, B. C., Kavlock, R. J., Kimmel, C. A., and Faustman, E. M. (1994a) Dose-response assessment for developmental toxicity. II. Comparison of generic benchmark dose estimates with no observed adverse effect levels. Fundam. Appl. Toxicol. 23, 487–495.PubMedCrossRefGoogle Scholar
  5. 5.
    Allen, B. C., Kavlock, R. J., Kimmel, C. A., and Faustman, E. M. (1994b) Dose-response assessment for developmental toxicity. III. Statistical models. Fundam. Appl. Toxicol. 23, 496–509.PubMedCrossRefGoogle Scholar
  6. 6.
    Kavlock, R. J., Allen, B. C., Faustman, E. M., and Kimmel, C. A. (1995) Dose-response assessment for developmental toxicity. IV. Benchmark doses for fetal weight changes. Fundam. Appl. Toxicol. 26, 211–222.PubMedCrossRefGoogle Scholar
  7. 7.
    O’Flaherty, E. J. (1997) Pharmacokinetics, pharmacodynamics, and prediction of developmental abnormalities. Reprod. Toxicol. 11, 413–416.PubMedCrossRefGoogle Scholar
  8. 8.
    Daston, G. P. (1997) Advances in understanding mechanisms of toxicity and implication for risk assessment. Reprod. Toxicol. 11, 389–396.PubMedCrossRefGoogle Scholar
  9. 9.
    Kavlock, R. J. (1997) Recent advances in mathematical modeling of developmental abnormalities using mechanistic information. Reprod. Toxicol. 11, 423–434.PubMedCrossRefGoogle Scholar
  10. 10.
    Wilson, J. G. (1973) Environment and Birth Defects. Academic, New York.Google Scholar
  11. 11.
    Gaylor, D. W. and Razzaghi, M. (1992) Process of building biologically based dose-response models for developmental defects. Teratology 46, 573–581.PubMedCrossRefGoogle Scholar
  12. 12.
    Gaylor, D. W. and Chen, J. J. (1993) Dose-response models for developmental malformations. Teratology 47, 291–297.PubMedCrossRefGoogle Scholar
  13. 13.
    Leroux, B. G., Leisenring, W. M., Moolgavkar, S. H., and Faustman, E. M. (1996) A biologically-based dose-response model for developmental toxicology. Risk Anal. 16, 449–458.PubMedCrossRefGoogle Scholar
  14. 14.
    Abbott, B. D., Lau, C., Buckalew, A. R., Logsdon, T. R., Setzer, W., Zucker, R. M., Elstein, K. H., and Kavlock, R. J. (1993) Effects of 5-fluorouracil on embryonic rat palate in vitro: fusion in the absence of proliferation. Teratology 47, 541–554.PubMedCrossRefGoogle Scholar
  15. 15.
    Elstein, K. H., Zucker, R. M., Andrews, J. E., Ebron-McCoy, M., Shuey, D. L., and Rogers, J. M. (1993) Effects of developmental stage and tissue type on embryo/fetal DNA distributions and 5-fluorouracil-induced cell cycle perturbations. Teratology 48, 355–363.PubMedCrossRefGoogle Scholar
  16. 16.
    Shuey, D. L., Zucker, R. M., Elstein, K. H., and Rogers, J. M. (1994) Fetal anemia following maternal exposure to 5-fluorouracil in the rat. Teratology 49, 311–319.PubMedCrossRefGoogle Scholar
  17. 17.
    Shuey, D. L., Buckalew, A. R., Wilke, T. S., Rogers, J. M., and Abbott, B. D. (1994) Early events following maternal exposure to 5-fluororuracil lead to dysmorphology in cultured embryonic tissues. Teratology 50, 379–386.PubMedCrossRefGoogle Scholar
  18. 18.
    Shuey, D. L., Lau, C., Logsdon, T. R., Zucker, R. M., Elstein, K. H., Narotksy, M. G., Setzer, R. W., Kavlock, R. J., and Rogers, J. M. (1994) Biologically based dose-response models for developmental toxicology: biochemical and cellular sequelea of 5-fluorouracil exposure in the developing rat. Toxicol. Appl. Pharmacol. 126, 129–144.PubMedCrossRefGoogle Scholar
  19. 19.
    Zucker, R. M., Elstein, K. H., Shuey, D. L., and Rogers, J. M. (1995) Flow cytometric detection of abnormal fetal erythropoiesis: application to 5-fluorouracil-induced anemia. Teratology 51, 37–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Copp, A. J. (1994) Birth defect: from molecules to mechanisms. J. R. Coll. Physicians London 28, 294–300.Google Scholar
  21. 21.
    Rogers, M. B., Glozak, M. A., and Heller, L. C. (1997) Induction of altered gene expression in early embryos. Mutat. Res. 396, 79–95.PubMedGoogle Scholar
  22. 22.
    Harris, M. J. and Juriloff, D. M. (1997) Genetic landmarks for defects in mouse neural tube closure. Teratology 56, 177–187.PubMedCrossRefGoogle Scholar
  23. 23.
    Barnes, G. L., Mariani, B. D., and Tuan, R. S. (1996) Valproic acid-induced somite teratoge-nesis in the chick embryo: relationship with Pax-1 gene expression. Teratology 54, 93–102.PubMedCrossRefGoogle Scholar
  24. 24.
    Wubah, J. A., Ibrahim, M. M., Gao, X., Nguyen, D., Pisano, M. M., and Knudsen, T. B. (1996) Teratogen-induced eye defects mediated by p53-dependent apoptosis. Current Biol. 1, 60–69.CrossRefGoogle Scholar
  25. 25.
    Helms, J. A., Kim, C. H., Hu, D., Minkoff, R., Thaller, C., and Eichele, G. (1997) Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratoge-nic doses of retinoic acid. Dev. Biol. 187, 25–35.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Christopher Lau
    • 1
  • R. Woodrow Setzer
    • 1
  1. 1.Research and Administrative Support Division,National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency

Personalised recommendations