Bioassays for Studying the Role of the Peptide Growth Factor Activin in Early Amphibian Embryogenesis

  • Makoto Asashima
  • Takashi Ariizumi
  • Shuji Takahashi
  • George M. Malacinski
Part of the Methods in Molecular Biology™ book series (MIMB, volume 136)


Activin, a peptide growth factor, is a member of the transforming growth factor-β (TGF-β) superfamily. It was originally isolated from follicle fluid as a gonadal hormone that stimulates follicle-stimulating hormone (FSH) secretion and is identical to EDF, the erythroid differentiation factor (which stimulates erythroleukemia cells to differentiate into hemoglobin-producing cells) (1). It also appears to be related, if not identical, to the so-called “vegetalizing factor”described originally by Tiedemann and colleagues, which can induce amphibian embryonic tissue rudiments to display various differentiation patterns (reviewed in ref. 2). In addition, it appears to be identical to the XTC factor isolated by Smith et al. (3) from transformed Xenopus fibroblasts. Thus, the identification of activin as a potential morphogen in amphibian embryos (4) solved several mysteries surrounding the puzzle regarding the molecular nature of various hitherto ill-characterized “inducing substances.“


Peptide Growth Factor Embryonic Patterning Coelomic Epithelium Activin Receptor Amphibian Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Murata, M., Eto, Y., Shibai, H., Sakai, M., and Muramatsu, M. (1988) Erythroid differentiation factor is encoded by the same mRNA as that of inhibin βA chain. Proc. Natl. Acad. Sci. USA 85, 2434–2438.PubMedCrossRefGoogle Scholar
  2. 2.
    Tiedemann, H., Asashima, M., Born, J., Grunz, H., Knochel, W., and Tiedemann, H. (1996) Determination, inductin and pattern formation in early amphibian embryos. Dev. Growth Differ. 36, 233–246.CrossRefGoogle Scholar
  3. 3.
    Smith, J. C., Price, B. M. J., van Nimmen, K., and Huylebroek, D. (1990) Identification of a potent Xenopus mesoderm inducing factor as a homologue of activin A. Nature 345, 729–731.PubMedCrossRefGoogle Scholar
  4. 4.
    Asashima, M., Nakano, H., Shimada, K., Kinoshita, K., Ishi, K., Shibai, H., and Ueno, N. (1990) Mesodermal induction in early amphibian embryos by activin A. Roux’s Arch. Dev. Biol. 198, 330–335.CrossRefGoogle Scholar
  5. 5.
    Fukui, A., Nakamura, T., Uchiyama, H., Sugino, K., and Asashima, M. (1994) Identification of activins A, AB, and B and follistatin proteins in Xenopus embryos. Dev. Biol. 163, 279–281.PubMedCrossRefGoogle Scholar
  6. 6.
    Asashima, M., Nakano, H., Uchiyama, H., Sugino, H., Nakamura, T., Eto, Y, Ejima, D., Nishimatsu, S., Ueno, N., and Kinoshita, K. (1991) Presence of activin (erythroid differentiation factor) in unfertilized eggs and blastulae of Xenopus laevis. Proc. Natl. Acad. Sci. USA 88, 6511–6514.PubMedCrossRefGoogle Scholar
  7. 7.
    Uchiyama, H., Nakamura, T., Komazaki, S., Takio, K., Asashima, M., and Sugino, H. (1994) Localization of activin and follistatin proteins in the Xenopus oocyte. Biochem. Biophys. Res. Commun. 202, 484–489.PubMedCrossRefGoogle Scholar
  8. 8.
    Dohrmann, C. E., Hemmati-Brivanlou, A., Thomsen, G. H., Fields, A., Woolf, T. M., and Melton, D. A. (1993) Expression of activin mRNA during early development in Xenopus laevis. Dev. Biol. 157, 474–483.PubMedCrossRefGoogle Scholar
  9. 9.
    Okabayashi, K., Shoji, H., Nakamura, O., Nakamura, T., Hashimoto, O., Asashima, M., and Sugino, H. (1996) cDNA cloning and expression of the Xenopus laevis vitellogenin receptor. Biochem. Biophys. Res. Commun. 224, 406–413.PubMedCrossRefGoogle Scholar
  10. 10.
    Dohrmann, C. A., Hemmati-Brivanlou, A., Thomsen, G. H., Fields, A., Woolf, T. M., and Melton, D. A. (1993) Expression of activin mRNA during early development of Xenopus laevis. Dev. Biol. 157, 474–483.PubMedCrossRefGoogle Scholar
  11. 11.
    Ariizumi, T., Moriya, N., Uchiyama, H., and Asashima, M. (1991) Concentration dependent inducing activity of activin A. Roux’s Arch. Dev. Biol. 200, 230–233.CrossRefGoogle Scholar
  12. 12.
    Green, J. B. and Smith, J. C. (1990) Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347, 391–394.PubMedCrossRefGoogle Scholar
  13. 13.
    Ariizumi, T. and Asashima, M. (1995) Head and trunk-tail organizing effects of the gas-trula ectoderm of Cynops pyrrogaster after treatment with activin A. Roux’s Arch. Dev. Biol. 204, 427–435.CrossRefGoogle Scholar
  14. 14.
    Uochi, T., and Asashima, M. (1996) Sequential gene expression during pronephric tubule formation in vitro in Xenopus ectoderm. Dev. Growth Differ. 38, 625–634.CrossRefGoogle Scholar
  15. 15.
    Ariizumi, T., Komazaki, S., Asashima, M., and Malacinski, G. M. (1996) Activin treated urodele ectoderm: a model experimental system for cardiogenesis. Int. J. Dev. Biol. 40, 715–718.PubMedGoogle Scholar
  16. 16.
    Ariizumi, T., Sawamura, K., Uchiyama, H., and Asashima, M. (1991) Dose and time-dependent mesoderm induction and outgrowth formation by activin A in Xenopus laevis. Int. J. Dev. Biol. 35, 407–414.PubMedGoogle Scholar
  17. 17.
    Kondo, M., Tashiro, K., Fujii, G., Asano, M., Miyoshi, R., Yamada, R., Muramatsu, M., and Shiokawa, K. (1991) Activin receptor mRNA is expressed early in Xenopus embryogenesis and the level of the expression affects the body axis formation. Biochem. Biophys. Res. Commun. 181, 684–690.PubMedCrossRefGoogle Scholar
  18. 18.
    Hemmati-Brivanlou, A., Wright, D. A., and Melton, D. A. (1992) Embryonic expression and functional analysis of a Xenopus activin receptor. Dev. Dyn. 194, 1–11.PubMedGoogle Scholar
  19. 19.
    Armes, N. A. and Smith, J. C. (1997) The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not cooperate to establish thresholds. Development 124, 3797–3804.PubMedGoogle Scholar
  20. 20.
    Hemmati-Brivanlou, A., and Melton, D. A. (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273–281.PubMedCrossRefGoogle Scholar
  21. 21.
    New, H. V., Kavka, A. I., Smith, J. C., and Green, J. B. (1997) Differential effects on Xenopus development of interference with type IIA and type IIB activin receptors. Mech. Dev. 61, 175–186.PubMedCrossRefGoogle Scholar
  22. 22.
    Ying, S.-Y., Zhang, Z., Furst, B., Batres, Y., Huang, G., and Li, G. (1997) Activins and activin receptors in cell growth. Proc. Soc. Exp. Biol. Med. 214, 114–122.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Makoto Asashima
    • 1
  • Takashi Ariizumi
    • 2
  • Shuji Takahashi
    • 2
  • George M. Malacinski
    • 3
  1. 1.Department of Life Science (Biology),Graduate School of Arts and SciencesThe University of Tokyo,and CREST, Japan Science and Technology CorpTokyoJapan
  2. 2.CRESTJapan Science and Technology CorpTokyoJapan
  3. 3.Department of BiologyIndiana UniversityBloomington

Personalised recommendations