Reconstitution of Functional Integrin into Phopsholipid Vesicles and Planar Lipid Bilayers

  • Eva-Maria Erb
  • Jürgen Engel
Part of the Methods in Molecular Biology™ book series (MIMB, volume 139)


Integrins are heterodimeric cell-surface receptors involved in a variety of functions such as binding to the ECM, regulation of the cellular organization, cell migration, proliferation, differentiation, and gene expression (1,2). Integrins in their native environment can diffuse in the plane of the membrane, and this mobility is required for processes like the assembly of integrins to focal contacts or cell migration (3,4).


Vesicle Fusion Focal Contact Phospholipid Vesicle Total Internal Reflection Fluorescence Total Internal Reflection Fluorescence Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hynes, R. O. (1987) Integrins: a family of cell surface receptors. Cell 48, 549–554.PubMedCrossRefGoogle Scholar
  2. 2.
    Hynes, R. O. (1992) Integrins: versatility, modulation and signaling in cell adhe-sion. Cell 69, 11–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Duband, J.-L., Nuckolls, G. H., Ishihara, A., Hasegawa, T., Yamada, K. M., Thiery, J. P., and Jacobson, K. (1988) Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells. J. Cell Biol. 107, 1385–1396.PubMedCrossRefGoogle Scholar
  4. 4.
    Schmidt, C. E., Horwitz, A. F., Lauffenburger, D. A., and Sheetz, M. P. (1995) Integrin-cytoskeletal interactions in migrating fibroblsts are dynamic, asymmet-ric and regulated. J.Cell Biol. 123, 977–991.CrossRefGoogle Scholar
  5. 5.
    Johnson, S. J., Bayerl, T. M., McDermott, D. C., Adam, G. W., Rennie, A. R., Thomas, R. K., and Sackmann, E. (1991) Structure of an adsorbed dimyristoyl-phosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys. J. 59, 289–294.PubMedCrossRefGoogle Scholar
  6. 6.
    Pachence, J. M., Amador, S., Maniara, G., Vanderkooi, J., Dutton, P. L., and Blasie, J. K. (1990) Orientation and lateral mobility of cytochrome c on the sur-face of ultrathin lipid multilayer films. Biophys. J. 58, 379–389.PubMedCrossRefGoogle Scholar
  7. 7.
    Tilton, R. D., Gast, A. P., and Robertson, C. R. (1990) Surface diffusion of inter-acting proteins. Effect of concentration on the lateral mobility of adsorbed bovine serum albumin. Biophys. J. 58, 1321–1326.PubMedCrossRefGoogle Scholar
  8. 8.
    Müller, B., Zerwes, H.-G., Tangemann, K., Peter, J., and Engel, J. (1993) Two-step binding mechanism of fibrinogen to αIIbβ3 integrin reconstituted into planar lipid bilayers. J. Biol. Chem. 268, 6800–6808.PubMedGoogle Scholar
  9. 9.
    Parise, L. V. and Philips, D. R. (1985) Reconstitution of the purified fibrinogen-receptor. J. Biol. Chem. 260, 10,698–10,707.PubMedGoogle Scholar
  10. 10.
    Pytela, R., Pirschbacher, M. D., and Ruoslahti, E. (1985) Platelet membrane gly-coprotein IIbIIIa; Member of a family of arg-gly-asp-specific adhesion receptors. Cell 40, 191–198.PubMedCrossRefGoogle Scholar
  11. 11.
    Holloway, P. W. (1973) A simple procedure for removal of triton X-100 from protein samples. Analyt. Biochem. 53, 304–308.PubMedCrossRefGoogle Scholar
  12. 12.
    Peterson, G. L. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346–356.PubMedCrossRefGoogle Scholar
  13. 13.
    Böttcher, C. J. F., Van Gent, C. M., and Fries, C. (1961) A rapid and sensitive sub-micro phosphorus determination. Anal. Chim. Acta 24, 203–204.CrossRefGoogle Scholar
  14. 14.
    Brian, A. A., and McConnell, H. M. (1984) Allogenic stimunlation of cytotoxic T cells by supported planar membranes. Proc. Natl. Acad. Sci. USA 81, 6159–6163.PubMedCrossRefGoogle Scholar
  15. 15.
    Tamm, L. K. and Kalb, E. (1993). Microspectofluorometry on supported planar membranes, in Molecular Luminescence Spectroscopy, Part 3, Chemical Analy-sis Series (Schulman, S. G., ed.), J Wiley, New York, pp. 253–305.Google Scholar
  16. 16.
    Hope, M. J., Bally, M. B., Webb, G., and Cullis, P. R. (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size dis-tribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta 812, 55–65.CrossRefGoogle Scholar
  17. 17.
    Kalb, E. and Tamm, L. K. (1992) Incorporation of cytochrom b5 into supported phospholipid bilayers by vesicle fusion to supported monolayers. Thin Solid Films 210/211, 763–765.CrossRefGoogle Scholar
  18. 18.
    Kalb, E., Frey, S., and Tamm, L. K. (1992) Formation of supported planar bilay-ers by fusion of vesicles to supported phospholipid monolayers. Biochim. Biophys. Acta 1103, 307–316.PubMedCrossRefGoogle Scholar
  19. 19.
    Tamm, L. K. (1988) Lateral diffusion and fluorescence microscope studies on a monoclonal antibody specifically bound to supported phospholipid bilayers. Biochemistry 27, 1450–1457.PubMedCrossRefGoogle Scholar
  20. 20.
    Vaz, W. L. C., Goodsaid-Zalduondo, F., and Jacobson, K. (1984) Lateral diffu-sion of lipids and proteins in bilayer membranes. FEBS Lett. 174, 199–207.CrossRefGoogle Scholar
  21. 21.
    Erb, E.-M., Tangemann, K., Bohrmann, B., Müller, B., and Engel, J. (1997) Integrin αIIbβ3 reconstituted into Lipid Bilayers is nonclustered in its activated state but clusters after fibrinogen binding. Biochemistry 36, 7395–7402.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Eva-Maria Erb
    • 1
  • Jürgen Engel
    • 1
  1. 1.Biocenter of the University of BaselBasel

Personalised recommendations