Skip to main content

Retroviral Delivery of ECM Genes to Cells

  • Protocol
Extracellular Matrix Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 139))

  • 861 Accesses

Abstract

The introduction of recombinant DNA has become a common tool for studying functional and structural properties of a wide variety of proteins. Functional analysis of protein can be studied by suppression of gene expression, thus introducing a plasmid which expresses an antisense RNA in mammalian cells. Several extracellular matrix proteins require an assembly of subunits to form functional heteromultimers with distinct features. Thus, expression of a specific mutant protein can interfere with the assembly of multimeric protein, resulting in a dominant-negative phenotype. In these studies, an efficient delivery of DNA into appropriate target cells represents a critical step. Although many procedures of transfection of the plasmid DNA into mammalian cells are available, viral infection represents a far superior mode of delivery because retroviral vectors were shown to transduce genes of interest into tissue-culture cells with success rates approaching 100%. The retrovirus inserts the viral genome into the chromosome of the infected cell permanently, usually without any measurable effect on the viability of the infected cells. The result is an efficient gene-transfer system in which most recipient cells will incorporate and express the transduced gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss R., Teich N., and Coffin J., (1984 and 1985). RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.

    Google Scholar 

  2. Cone, R. D. and Mulligan, R. C. (1984) High-efficiency gene transfer into mammalian cells: generation of helper-free recombinant retrovirus with broad mammalian host range. Proc. Natl. Acad. Sci. USA 90, 8033–8037.

    Google Scholar 

  3. Miller. A. D. and Chen. F. (1996) Retrovirus packaging cells based on 10A1 murine leukemia virus for production of vectors that use multiple receptors for cell entry. J. Virol. 70, 5564–5571.

    PubMed  CAS  Google Scholar 

  4. Warren, S. P., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.

    Article  Google Scholar 

  5. Kinsella, T. M. and Nolan, G. P. (1996) Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413.

    Article  PubMed  CAS  Google Scholar 

  6. Yu, S. F., Ruden, T., Kantoff, P. W. Garber, C. Seiberg, M., Ruther, U., et al. (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl. Acad. Sci. USA 83, 3194–3198.

    Article  PubMed  CAS  Google Scholar 

  7. Deng, H., Lin, Q., and Khavari, P. A. (1997) Sustainable cutaneous gene delivery. Nature Biotech. 15, 1388–1391.

    Article  CAS  Google Scholar 

  8. Hoeben R. C., Migchielisen, A. A., van der Jagt, R. C., van Ormondt, H., and van der Eb, A. J. (1991) Inactivation of the Molony murine leukemia virus long terminal repeat in murine fibroblast cell lines is associated methylation and dependent on its chromosomal position. J. Virol. 65, 904–912.

    PubMed  CAS  Google Scholar 

  9. Yarranton, G. T. (1992) Inducible vectors for expression in mammalian cells. Curr. Opin. Biotechnol. 3, 506–511.

    Article  PubMed  CAS  Google Scholar 

  10. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA PNAS 89, 5547–5551.

    Article  CAS  Google Scholar 

  11. Gossen, M., Freundlies, S., Bender, G., Muller G., Hillen, W., and Bujard. H. (1995) Transcriptional activation by tetracyclines in mammalian cell. Science 268, 1766–1769.

    Article  PubMed  CAS  Google Scholar 

  12. Hoffman, A., Nolan, G. P., and Blau, H. M. (1996) Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc. Natl. Acad. Sci. USA 93, 5185–5190.

    Article  Google Scholar 

  13. Hillen, W. and Berens, C. (1994) Mechanisms underlying expression of Tn10-encoded tetracycline resistance. Annu. Rev. Microbiol. 48, 345–369.

    Article  PubMed  CAS  Google Scholar 

  14. Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Yoon, K., Alexeev, V. (2000). Retroviral Delivery of ECM Genes to Cells. In: Streuli, C.H., Grant, M.E. (eds) Extracellular Matrix Protocols. Methods in Molecular Biology™, vol 139. Humana Press. https://doi.org/10.1385/1-59259-063-2:197

Download citation

  • DOI: https://doi.org/10.1385/1-59259-063-2:197

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-624-6

  • Online ISBN: 978-1-59259-063-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics