Skip to main content

Use of Proteasome Inhibitors to Examine Processing of Antigens for Major Histocompatibility Complex Class I Presentation

  • Protocol
Book cover Antigen Processing and Presentation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 156))

Abstract

Proteasomes are multicatalytic proteases present in the nucleus and cytosol of eukaryotic cells. The central catalytic core, the 20S proteasome, consists of four heptameric rings, the central two of which contain the catalytic β-sub- units, members of a new family of threonine (Thr)-proteases. The outer rings, made of α-subunits, bind the regulators that control the substrate specificity of the proteasome. The binding of a 19S regulator to each end of the 20S core creates the 26S proteasome, which degrades ubiquitinated substrates in an adenosine triphosphate-dependent manner (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumeister, W., Walz, J., Zühl, F., and Seemüller, E. (1998) Proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380.

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman, L., and Rechsteiner, M. (1996) Regulatory features of multicatalytic and 26S proteasomes. Curr. Top. Cell Regul. 34, 1–32.

    Article  CAS  PubMed  Google Scholar 

  3. Yewdell, J. W. and Bennink, J. R. (1992) Cell biology of antigen processing and presentation to Major Histocompatibility Complex class I molecule-restricted T lymphocytes. Adv. Immunol. 52, 1–123.

    Article  CAS  PubMed  Google Scholar 

  4. Goldberg, A. L. and Rock, K. L. (1992) Proteolysis, proteasomes and antigen processing. Nature 357, 375–379.

    Article  CAS  PubMed  Google Scholar 

  5. Nandi, D., Marusina, K., and Monaco, J. J. (1998) How do endogenous proteins become peptides and reach the endoplasmic reticulum. Curr. Top. Microbiol. Immunol. 232, 15–47.

    CAS  PubMed  Google Scholar 

  6. Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771.

    Google Scholar 

  7. Bogyo, M., Gaczynska, M., and Ploegh, H. L. (1997) Proteasome inhibitors and antigen presentation. Biopolymers 43, 269–280.

    Article  CAS  PubMed  Google Scholar 

  8. Vinitsky, A., Michaud, C., Powers, J. C., and Orlowski, M. (1992) Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 31, 9421–9428.

    Article  CAS  PubMed  Google Scholar 

  9. Löwe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995) Crystal structure of the 20S proteasome from the Archaeon T. Acidophilum at 3.4 A resolution. Science 268, 533–539.

    Article  PubMed  Google Scholar 

  10. Fenteany, G., Standaert, R. F., Lane, W. S., Choi, S., Corey, E. J., and Schreiber, S. L. (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731.

    Article  CAS  PubMed  Google Scholar 

  11. Dick, L. R., Cruikshank, A. A., Grenier, L., Melandri, F. D., Nunes, S. L., and Stein, R. L. (1996) Mechanistic studies on the inactivation of the proteasome by lactacystin. A central role for clasto-lactacystin β-lactone. J. Biol. Chem. 271, 7273–7276.

    Article  CAS  PubMed  Google Scholar 

  12. Ostrowska, H., Wojcik, C., Omura, S., and Worowski, K. (1997) Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal chathepsin A-like enzyme. Biochem. Biophys. Res. Commun. 234, 729–732.

    Article  CAS  PubMed  Google Scholar 

  13. Bogyo, M., McMaster, J. S., Gaczynska, M., Tortorella, D., Goldberg, A. L., and Ploegh, H. L. (1997) Covalent modification of the active site threonine of proteasomal β subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc. Natl. Acad. Sci. USA 94, 6629–6634.

    Article  CAS  PubMed  Google Scholar 

  14. McCormack, T., Baumeister, W., Grenier, L., Moomaw, C., Plamondon, L., Pramanik, B., et al. Active site inhibitors of Rhodococcus 20 S proteasome. Kinetics and mechanism. J. Biol. Chem. 272, 26,103–26,109.

    Google Scholar 

  15. Bachmair, A., Finley, D., and Varshavski, A. (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186.

    Article  CAS  PubMed  Google Scholar 

  16. Varshavsky, A. (1996) N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93, 12,142–12,149.

    Article  CAS  PubMed  Google Scholar 

  17. Townsend, A., Bastin, J., Gould, K., Brownlee, G., Andrew, M., Coupar, B., Boyle, D., Chan, S., and Smith, G. (1988) Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen. J. Exp. Med. 168, 1211–1224.

    Article  CAS  PubMed  Google Scholar 

  18. Porgador, A., Yewdell, J. W., Deng, Y., Bennink, J. R., and Germain, R. N. (1997) Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6, 715–726.

    Article  CAS  PubMed  Google Scholar 

  19. Andersen, P. S., Stryhn, A., Hansen, B. E., Fugger, L., Engberg, J., and Buus, S. (1996) Recombinant antibody with the antigen-specific, major histo-compatibility complex-restricted specificity. Proc. Natl. Acad. Sci. USA 93, 1820–1824.

    Article  CAS  PubMed  Google Scholar 

  20. Mimnaugh, E. G., Chen, H. Y., Davie, J. R., Celis, J. E., and Neckers, L. (1997) Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: effects on replication, transcription, translation, and cellular stress. Biochemistry 36, 14,418–14,429.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, M., Wu, X., and Ginsberg, H. N. (1996) Evidence that a rapidly turning over protein, normally degraded by proteasomes, regulates hsp72 gene transcription in HepG2 cells. J. Biol. Chem. 271, 24,769–24,775.

    Article  CAS  PubMed  Google Scholar 

  22. Bush, K. T., Goldberg, A. L., and Nigam, S. K. (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. j. Biol. Chem. 272, 9086–9092.

    Article  CAS  PubMed  Google Scholar 

  23. Kawazoe, Y., Nakai, A., Tanabe, M., and Nagata, K. (1998) Proteasome inhibition leads to the activation of all members of the heat-shock-factor family. Eur. J. Biochem. 255, 356–362.

    Article  CAS  PubMed  Google Scholar 

  24. Hershko, A. and Ciechanover, A. (1998) The ubiquitin system. Ann. Rev. Biochem. 67, 425–479.

    Article  CAS  PubMed  Google Scholar 

  25. Grimm, L. M. and Osborne, B. A. (1999) Apoptosis and the proteasome. Results Probl. Cell Differ. 23, 209–228.

    CAS  PubMed  Google Scholar 

  26. Meriin, A. B., Gabai, V. L., Yaglom, J., Shifrin, V. I., and Sherman, M. Y.(1998) Proteasome inhibitors activate stress kinases and induce Hsp72. Diverse effects on apoptosis. j. Biol. Chem. 273, 6373–6379.

    Article  CAS  PubMed  Google Scholar 

  27. Yellen-Shaw, A. J. and Eisenlohr, L.C. (1997) Regulation of class I-restricted epitope processing by local or distal flanking sequence. j. Immunol. 158, 1727–1733.

    CAS  PubMed  Google Scholar 

  28. Vinitsky, A., Antón, L. C., Snyder, H. L., Orlowski, M., Bennink, J. R., and Yewdell, J. W. Generation of MHC class I-associated peptides is only partially inhibited by proteasome inhibitors. Involvement of nonproteasomal proteases in antigen processing? j. Immunol. 159, 554–564.

    Google Scholar 

  29. Cerundolo, V., Benham, A., Braud, V., Mukherjee, S., Gould, K., Macino, B., Neefjes, J., and Townsend, A. (1997) Proteasome-specific inhibitor lactacystin blocks presentation of cytotoxic T lymphocyte epitopes in human and murine cells. Eur. J. Immunol. 27, 336–341.

    Article  CAS  PubMed  Google Scholar 

  30. Antón, L. C., Snyder, H. L., Bennink, J. R., Vinitsky, A., Orlowski, M., Porgador, A., and Yewdell, J. W. (1998) Dissociation of proteasomal degradation of biosynthesized viral proteins from generation of MHC class I-associated antigenic peptides. j. Immunol. 160, 4859–4868.

    PubMed  Google Scholar 

  31. Benham, A., Grommé, V, and Neefjes, J. (1998) Allelic differences in the relationship between proteasome activity and MHC class I peptide loading. j. Immunol. 161, 83–89.

    CAS  PubMed  Google Scholar 

  32. Luckey, C. J., King, G. M., Marto, J. A., Venketeswaran, S., Maier, B. F., Crotzer, V. L., et al. (1998) Proteasomes can either generate or destroy MHC class I epitopes: evidence for nonproteasomal epitope generation in the cytosol. j. Immunol. 161, 112–121.

    CAS  PubMed  Google Scholar 

  33. Glas, R., Bogyo, M., McMaster, J. S., Gaczynska, M., and Ploegh, H. L. (1998) A proteolytic system that compensates for loss of proteasome function. Nature 392, 618–622.

    Article  CAS  PubMed  Google Scholar 

  34. Geier, E., Pfeifer, G., Wilm, M., Lucchiari-Hartz, M., Baumeister, W., Eichmann, K., and Niedermann, G. (1999) Giant protease with potential to substitute for some functions of the proteasome. Science 283, 978–981.

    Article  CAS  PubMed  Google Scholar 

  35. Williams, D. B., Swiedler, S. J., and Hart, G. W. (1985) Intracellular transport of membrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface. j. Cell Biol. 101, 725–734.

    Article  CAS  PubMed  Google Scholar 

  36. Moore, M. W., Carbone, F. R., and Bevan, M. J. (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54, 777–785.

    Article  CAS  PubMed  Google Scholar 

  37. Dick, L. R., Cruikshank, A. A., Destree, A. T., Grenier, L., McCormack, T. A., Melandri, F. D., et al. (1997) Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. j. Biol. Chem. 272, 182–188.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Antón, L.C., Bennink, J.R., Yewdell, J.W. (2000). Use of Proteasome Inhibitors to Examine Processing of Antigens for Major Histocompatibility Complex Class I Presentation. In: Solheim, J.C. (eds) Antigen Processing and Presentation Protocols. Methods in Molecular Biology, vol 156. Humana Press. https://doi.org/10.1385/1-59259-062-4:17

Download citation

  • DOI: https://doi.org/10.1385/1-59259-062-4:17

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-745-8

  • Online ISBN: 978-1-59259-062-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics