Protocol for Diversion of a CD4+Response to theT-Helper 2 Cell Pathway

  • Francesca Galbiati
  • Luciano Adorini
Part of the Methods in Molecular Biology book series (MIMB, volume 156)


Differentiated CD4+T-cells produce a restricted set of cytokines, allowing their subdivision into two discrete populations: T-helper 1 (Th1), characterized by secretion of interleukin 2 (IL-2) and interferon γ (IFN-γ); and Th2, selectively producing IL-4, IL-5, and IL-10 (1). Polarized subsets of antigen(Ag)- specific CD4+Th1 and Th2 cells can be induced in vivo by Ag priming, and their development is primarily influenced by the cytokine milieu during the initial phase of the immune response. Among cytokines, decisive roles are played by IL-12 and IL-4, driving T-cell responses toward the Th1 or Th2 phenotype, respectively (2, 3). The polarization in Th1 and Th2 cells is also influenced by several other factors, including non-major histocompatibility complex (MHC) genetic polymorphism (4-6; see Note 1), ligand-T-cell receptor (TCR) interaction (7,8), Ag dose (9,10), and mode of Ag administration (11; see Note 2 ).


Lymph Node Cell Absorbent Paper Hind Footpad FACS Medium Miniosmotic Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., and Coffmann, R. L. (1986) Two types of murine helper T cell clone. I. Definition according to profile of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357.PubMedGoogle Scholar
  2. 2.
    Gately, M. K., Renzetti, L. M., Magram, J., Stern, A., Adorini, L., Gubler, U., and Presky, D. H. (1998) Interleukin-12/interleukin-12 receptor system: role in normal and pathologic immune responses. Annu. Rev. Immunol. 16, 495–521.CrossRefPubMedGoogle Scholar
  3. 3.
    Paul, W. E. and Seder, R. A. (1994) Lymphocytes responses and cytokines. Cell 76, 241–251.CrossRefPubMedGoogle Scholar
  4. 4.
    Scott, B., Liblau, R., Degermann, S., Marconi, L. A., Ogata, L., Caton, A. J., McDevitt, H. O., and Lo, D. (1994) Role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity 1, 1–20.CrossRefGoogle Scholar
  5. 5.
    Hsieh, C., Macatonia, S. E., O’Garra, A., and Murphy, K. M. (1995) T cell genetic background determines default T helper phenotype development in vitro. J. Exp. Med. 181, 713–731.CrossRefPubMedGoogle Scholar
  6. 6.
    Reiner, S. L. and Locksley, R. M. (1995) Regulation of immunity to Leishmania major. Annu. Rev. Immunol. 13, 151–177.CrossRefPubMedGoogle Scholar
  7. 7.
    Pfeiffer, C., Stein, J., Southwood, S., Ketelaar, H., Sette, A., and Bottomly, K. (1995) Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J. Exp. Med. 181, 1569–1574.CrossRefPubMedGoogle Scholar
  8. 8.
    Nicholson, L. B., Greer, J. M., Sobel, R. A., Lees, M. B., and Kuchroo, V. K. (1995) Altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3, 397–405.CrossRefPubMedGoogle Scholar
  9. 9.
    Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M., and O’Garra, A. (1995) Effect of antigen dose on CD4+helper cell phenotype development in a T cell receptor-αβ-transgenic model. J. Exp. Med. 182, 1579–1584.CrossRefPubMedGoogle Scholar
  10. 10.
    Constant, S., Pfeiffer, C., Woodard, A., Pasqualini, T., and Bottomly, K. (1995) Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+T cells. J. Exp. Med. 182, 1591–1596.CrossRefPubMedGoogle Scholar
  11. 11.
    Guéry, J.-C., Galbiati, F., Smiroldo, S., and Adorini, L. (1997) Non MHC-linked Th2 cell development induced by soluble protein administration predicts susceptibility to Leishmania major infection. J. Immunol. 159, 2147–2153.PubMedGoogle Scholar
  12. 12.
    Heinzel, F. P., Sadick, M. D., Holaday, B. J., Coffman, R. L., and Locksley, R. M. (1989) Reciprocal expression of interferon γ or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J. Exp. Med. 169, 59–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Guéry, J.-C., Galbiati, F., Smiroldo, S., and Adorini, L. (1996) Selective development of Th2 cells induced by continuous administration of low dose soluble proteins to normal and β2-micr°gl°bulin-deficient BALB/c mice. J. Exp. Med. 183, 485–497.CrossRefPubMedGoogle Scholar
  14. 14.
    Howard, J. G., Hale, C., and Chan-Liew, W. L. (1980) Immunological regulation of experimental cutaneous leishmaniasis. I. Immunogenetic aspects of susceptibility to Leishmania tropica in mice. Parasite Immunol. 2, 303–310.CrossRefPubMedGoogle Scholar
  15. 15.
    Degermann, S., Pria, E., and Adorini, L. (1996) Soluble protein but not peptide administration diverts the immune response of a clonal CD4+T cell population to the T helper 2 pathway. J. Immunol. 157, 3260–3269.PubMedGoogle Scholar
  16. 16.
    De Wit, D., Van Mechelen, M., Ryelandt, M., Figueiredo, A. C., Abramowicz, D., Goldman, M., et al. (1992) Injection of deaggregated gamma globulins in adult mice induces antigen-specific unresponsiveness of T helper type 1 but not type 2 lymphocytes. J. Exp. Med. 175, 9–14.CrossRefPubMedGoogle Scholar
  17. 17.
    Burstein, H. J., Shea, C. M., and Abbas, A. K. (1992) Aqueous antigens induce in vivo tolerance selectively in IL-2-and IFN-γ-producing (Th1) cells. J. Immunol. 148, 3687–3691.PubMedGoogle Scholar
  18. 18.
    Romball, C. G. and Weigle, W. O. (1993) In vivo induction of tolerance in murine CD4+cell subsets. J. Exp. Med. 178, 1637–1644.CrossRefPubMedGoogle Scholar
  19. 19.
    Forsthuber, T., Yip, H. C., and Lehmann, P. V. (1996) Induction of Th1 and Th2 immunity in neonatal mice. Science 271, 1728–1731.CrossRefPubMedGoogle Scholar
  20. 20.
    Prat, M., Gribaudo, G., Comoglio, P. M., Cavallo, G., and Landolfo, S. (1984) Monoclonal antibodies against murine γ interferon. Proc. Natl. Acad. Sci. USA 81, 4515–4519.CrossRefPubMedGoogle Scholar
  21. 21.
    Cherwinski, H., Shumacher, J., Brown, K., and Mosmann, T. (1987) Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally mono-specific bioassays, and monoclonal antibodies. J. Exp. Med. 166, 1229–1244.CrossRefPubMedGoogle Scholar
  22. 22.
    Galbiati, F., Rogge, L., Guéry, J.-C., Smiroldo, S., and Adorini, L. (1998) Regulation of the interleukin (IL)-12 receptor β2 subunit by soluble antigen and IL-12 in vivo. Eur. J. Immunol. 28, 209–220.CrossRefPubMedGoogle Scholar
  23. 23.
    Szabo, S. J., Jacobson, A. G., Gubler, U., and Murphy, K. M. (1995) Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 2, 665–675.CrossRefPubMedGoogle Scholar
  24. 24.
    Perez, V. L., Lederer, J. A., Lichtman, A. H., and Abbas, A. K. (1995) Stability of Th1 and Th2 populations. Int. Immunol. 7, 869–875.CrossRefPubMedGoogle Scholar
  25. 25.
    Manetti, R., Gerosa, F., Giudici, M. G., Biagiotti, R., Parronchi, P., Piccinni, M.-P., et al. (1994) Interleukin 12 induces stable priming for interferon-γ (IFN-γ) production during differentiation of human T helper (Th) cells and transient IFN-γ production in established Th2 cell clones. J. Exp. Med. 179, 1273–1283.CrossRefPubMedGoogle Scholar
  26. 26.
    Sornasse, T., Larenas, P. V., Davis, K. A., De Vries, J. E., and Yssel, H. (1996) Differentiation and stability of T helper 1 and 2 cells derived from naive human neonatal CD4+T cells, analyzed at the single-cell level. J. Exp. Med. 184, 473–483.CrossRefPubMedGoogle Scholar
  27. 27.
    Szabo, S. J., Dighe, A. S., Gubler, U., and Murphy, K. M. (1997) Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185, 817–824.CrossRefPubMedGoogle Scholar
  28. 28.
    Rogge, L., Barberis-Maino, L., Biffi, M., Passini, N., Presky, D. H., Gubler, U., and Sinigaglia, F. (1997) Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 185, 825–831.CrossRefPubMedGoogle Scholar
  29. 29.
    Presky, D. H., Yang, H., Minetti, L. J., Chua, A. O., Nabavi, N., Wu, C.-Y., Gately, M. K., and Gubler, U. (1996) Functional interleukin-12 receptor complex is composed of two β type cytokine receptor subunits. Proc. Natl. Acad. Sci. USA 93, 14,002–14,007.CrossRefPubMedGoogle Scholar
  30. 30.
    Constant, S., Sant’Angelo, D., Pasqualini, T., Taylor, T., Levin, D., Flavell, R., and Bottomly, K. (1995) Peptide and protein antigen require distinct antigen-presenting cell subsets for the priming of CD4+T cells. J. Immunol. 154, 4915–4923.PubMedGoogle Scholar
  31. 31.
    Guéry, J.-C., Ria, F., Galbiati, F., Smiroldo, S., and Adorini, L. (1997) Mode of protein antigen administration determines preferential presentation of pep-tide-class II complexes by lymph node dendritic or B cells. Int. Immunol. 9, 9–15.CrossRefPubMedGoogle Scholar
  32. 32.
    Saoudi, A., Simmonds, S., Huitinga, I., and Mason, D. W. (1995) Prevention of experimental allergic encephalomyelitis in rats by targeting autoantigen to B cells: 244 evidence that the protective mechanism depends on changes in the cytokine response and migratory properties of autoantigen-specific T cells. J. Exp. Med. 182, 335–344.CrossRefPubMedGoogle Scholar
  33. 33.
    Guéry, J. C., Ria, F., Galbiati, F., and Adorini, L. (1997) Normal B cells fail to secrete IL-12. Eur. J. Immunol. 27, 1632–1639.CrossRefPubMedGoogle Scholar
  34. 34.
    Koch, F., Stanzl, U., Jennewein, P., Janke, K., Heufler, C., Kaempgen, E., Romani, N. and Schuler, G. (1996) High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med. 184, 741–746.CrossRefPubMedGoogle Scholar
  35. 35.
    Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A., and Alber, G. (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747–752.CrossRefPubMedGoogle Scholar
  36. 36.
    Gorham, J. D., Guler, M. L., Steen, R. G., Mackey, A. J., Daly, M. J., Frederick, K., Detrich, W. F., and Murphy, K. M. (1996) Genetic mapping of a murine locus controlling development of T helper 1/T helper 2 type responses. Proc. Natl. Acad. Sci. USA 93, 12,467–12,471.CrossRefPubMedGoogle Scholar
  37. 37.
    Mocci, S. and Coffman, R. L. (1995) Induction of a Th2 population from a polarized Leishmania-specific Th1 population by in vitro culture with IL-4. J. Immunol. 154, 3779–3787.PubMedGoogle Scholar
  38. 38.
    Murphy, E., Shibuya, K., Hosken, N., Openshaw, P., Maino, V., Davis, K., Murphy, K., and O’Garra, A. (1996) Reversibility of T helper 1 and 2 population is lost after long term stimulation. J. Exp. Med. 183, 901–913.CrossRefPubMedGoogle Scholar
  39. 39.
    Mocci, S. and Coffman, R. L. (1997) Mechanism of in vitro T helper cell type 1 to T helper cell type 2 switching in highly polarized Leishmania major-specific T cell populations. J. Immunol. 158, 1559–1564.PubMedGoogle Scholar
  40. 40.
    Nabors, G. S., Afonso, L. C. C., Farrell, J. P., and Scott, P. (1995) Switch from a type 2 to a type 1 T helper cell response and cure of established Leishmania majorinfection in mice is induced by combined therapy with interleukin 12 and Pentostam. Proc. Natl. Acad. Sci. USA 92, 3142–3146.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Francesca Galbiati
    • 1
  • Luciano Adorini
    • 2
  1. 1.Roche Milano RicercheItaly
  2. 2.Roche Milano RicercheItaly

Personalised recommendations