Skip to main content

Interaction of Nonnative Polypeptide Substrates with the Escherichia coli Chaperonin GroEL

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 140))

Abstract

A hallmark of the essential cellular factors known as molecular chaperones is their ability to bind tightly to a broad spectrum of nonnative polypeptides to facilitate protein folding in vivo and in vitro under nonideal or stressful conditions (1, 16). A variety of methods have been used to assess substrate protein binding to the bacterial chaperonin GroEL qualitatively. One of the earliest and most popular approaches involves the inhibition of in vitro refolding of various model proteins, such as ribulose bis-phosphate carboxylase (4,16), citrate synthase (7, 8), rhodanese (9, 10, malate dehydrogenase (11, 13), barnase (14), and glutamine synthetase (1517). Additional, quantitative procedures have relied on the use of size-exclusion chromatography to separate free radio- labeled proteins from those bound to GroEL (8,9, 1820), and on the effect of nonnative proteins on the ATPase activity of GroEL (21). However, the most straightforward techniques to measure the affinity and stoichiometry of polypeptide interactions with the chaperonins accurately and precisely have involved a direct or indirect measurement of the change in the concentration of a substrate protein when it partitions to GroEL from solution. Some of these methods have relied on the heat exchanged on polypeptide binding to GroEL (22, 23), on the distribution of bound and free substrates detected by ultracen- trifugation (24, 26), and on changes in surface plasmon resonance using BIAcore (27, 29) 17). Additional, quantitative procedures have relied on the use of size-exclusion chromatography to separate free radio- labeled proteins from those bound to GroEL (8,9, 1820), and on the effect of nonnative proteins on the ATPase activity of GroEL (21). However, the most straightforward techniques to measure the affinity and stoichiometry of polypeptide interactions with the chaperonins accurately and precisely have involved a direct or indirect measurement of the change in the concentration of a substrate protein when it partitions to GroEL from solution. Some of these methods have relied on the heat exchanged on polypeptide binding to GroEL (22, 23), on the distribution of bound and free substrates detected by ultracen- trifugation (24, 26), and on changes in surface plasmon resonance using BIAcore (27, 29)

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Van Dyk, T. K., Gatenby, A. A., and LaRossa, B. A. (1989) Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature 342, 451–453.

    Article  PubMed  Google Scholar 

  2. Viitanen, P. V., Gatenby, A. A., and Lorimer, G. H. (1992) Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Sci. 1, 363–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Horwich, A. L., Low, K. B., Fenton, W. A., Hirschfield, I. N., and Furtak, K. (1993) Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74, 909–917.

    Article  CAS  PubMed  Google Scholar 

  4. Goloubinoff, P., Gatenby, A. A., and Lorimer, G. H. (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxy-lase oligomers in Excherichia coli. Nature 337, 44–47.

    Article  CAS  PubMed  Google Scholar 

  5. Goloubinoff, P., Christeller, J. T., Gatenby, A. A., and Lorimer, G. H. (1989) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and MgATP. Nature 342, 884–889.

    Article  CAS  PubMed  Google Scholar 

  6. Viitanen, P. V., Lubben, T. H., Reed, J., Goloubinoff, P., O’Keefe, D. P., and Lorimer, G. H. (1990) Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) Are K+dependent. Biochemistry 29, 5665–5671.

    Article  CAS  PubMed  Google Scholar 

  7. Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F. X., and Keifhaber, T. (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  8. Martin, J., Geromanos, S., Tempst, P., and Hartl, F. U. (1993) The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature 366, 279–282.

    Article  CAS  PubMed  Google Scholar 

  9. Martin, J., Langer, T., Boteva, R., Schramel, A., Horwich, A. L., and Hartl, F. U. (1991) Chaperonin-mediated protein folding at the surface of groEL through a &quote;molten globule&quote;-like intermediate. Nature 352, 36–42.

    Article  CAS  PubMed  Google Scholar 

  10. Mendoza, J. A., Roger, E., Lorimer, G. H., and Horowitz, P. M. (1991) Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J. Biol. Chem. 266, 13,044–13,049.

    Article  CAS  PubMed  Google Scholar 

  11. Hartman, D. J., Surin, B. P., Dixon, N. E., Hoogenrad, N. J., and Hoj, P. B. (1993) Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro. Proc. Natl. Acad. Sci. USA 90, 2276–2280, and 3775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peralta, D., Hartman, D. J., Hoogenraad, N. J., and Hoj, P. B. (1994) Generation of a stable folding intermediate which can be rescued by the chaperonins GroEL and GroES. FEBS Lett. 339, 45–49.

    Article  CAS  PubMed  Google Scholar 

  13. Ranson, N. A., Dunster, N. J., Burston, S. G., and Clarke, A. R. (1995) Chaperonins can catalyze the reversal of early aggregation steps when a protein misfolds. J. Mol. Biol. 250, 581–586.

    Article  CAS  PubMed  Google Scholar 

  14. Gray, T. E., and Fersht, A. R. (1993) Refolding of barnase in the presence of GroE. J. Mol. Biol. 232, 1197–1207.

    Article  CAS  PubMed  Google Scholar 

  15. Fisher, M. T. (1992) Promotion of the in vitro renaturation of dodecameric glutamine synthetase in the presence of GroEL (Chaperonin-60) and ATP. Biochemistry 31, 3955–3963.

    Article  CAS  PubMed  Google Scholar 

  16. Fisher, M. T. (1993) On the assembly of dodecameric glutamine synthetase from stable chaperonin complexes. J. Biol. Chem. 268, 13,777–13,779.

    Article  CAS  PubMed  Google Scholar 

  17. Fisher, M. T. (1994) The effect of groES on the groEL-dependent assembly of dodecameric glutamine synthetase in the presence of ATP and ADP. J. Biol. Chem. 269, 13,629–13,636.

    Article  CAS  PubMed  Google Scholar 

  18. Bochkareva, E. S., Lissin, N. M., Flynn, G. C., Rothman, J. E., and Girshovich, A. S. (1992) Positive cooperativity in the functioning of molecular chaperone GroEL. J. Biol. Chem. 267, 6796–6800.

    Article  CAS  PubMed  Google Scholar 

  19. Viitanen, P. V., Donaldson, G. K., Lorimer, G. H., Lubben, T. H., and Gatenby, A. A. (1991) Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry 30, 9716–9723.

    Article  CAS  PubMed  Google Scholar 

  20. Hlodan, R., Tempst, P., and Hartl, F.-U. (1995) Binding of defined regions of a polypeptide to groel and its implications for chaperonin-mediated protein folding nature. Structural Biology 2, 587–595.

    Article  CAS  PubMed  Google Scholar 

  21. Yifrach, O., and Horovitz, A. (1996) Allosteric control by atp of non-folded protein binding to GroEL. J. Mol. Biol. 255, 356–361.

    Article  CAS  PubMed  Google Scholar 

  22. Lin, Z., Schwarz, F. P., and Eisenstein, E. (1995) The hydrophobic nature of groel-substrate binding. J. Biol. Chem. 270, 1011–1014.

    Article  CAS  PubMed  Google Scholar 

  23. Aoki, K., Taguchi, H., Shindo, Y., Yoshida, M., Ogasahara, K., Yutani, K., and Tanaka, N. (1997) Calorimetric observation of a GroEL-protein binding reaction with little contribution of hydrophobic interaction. J. Biol. Chem. 272, 32,158–32,162.

    Article  CAS  PubMed  Google Scholar 

  24. Mendoza, J. A., Demeler, B., and Horowitz, P. M. (1994) Alteration of the quaternary structure of cpn60 modulates chaperonin-assisted folding. J. Biol. Chem. 269, 2447–2451.

    Article  CAS  PubMed  Google Scholar 

  25. Mendoza, J. A., and Horowitz, P. M. (1994) Bound substrate polypeptides can generally stabilize the tetradecameric structure of cpn60 and induce its reassembly from monomers. J. Biol. Chem. 269, 25,963–25,965.

    Article  CAS  PubMed  Google Scholar 

  26. Grunau, C., Dettmer, R., Behlke, J., and Bernhardt, R. (1995) Bovine adreno-doxin-a mitochondrial iron-sulphur protein-binds to chaperonin GroEL. Biochem. Biophys. Res. Commun. 210, 1001–1008.

    Article  CAS  PubMed  Google Scholar 

  27. Zahn, R., Axmann, S. E., Rucknagel, K.-P., Jaeger, E., Laminet, A. A., and Pluckthun, A. (1994) Thermodynamic partitioning model for hydrophobic binding of polypeptides by GroEL. I. GroEL recognizes the signal sequences of β-lactamase precursor. J. Mol. Biol. 242, 150–164.

    Article  CAS  PubMed  Google Scholar 

  28. Murai, N., Taguchi, H., and Yoshida, M. (1995) Kinetic analysis of interactions between GroEL and reduced a-lactalbumin. J. Biol. Chem. 270, 19,957–19,963.

    Article  CAS  PubMed  Google Scholar 

  29. Lin, Z., and Eisenstein, E. (1996) Nucleotide binding-promoted conformational changes release a nonnative polypeptide from the Escherichia coli chaperonin GroEL. Proc. Natl. Acad. Sci. USA 93, 1977–1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hemmingsen, S. M., Woolford, C., van der Vies, S. M., Tilly, K., Dennis, D. T., Georgopoulos, C. P., Hendrix, R. W., and Ellis, R. J. (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333, 330–334.

    Article  CAS  PubMed  Google Scholar 

  31. Hayer-Hartl, M. K., Ewbank, J. J., Creighton, T. E., and Hartl, F. U. (1994) Conformational specificity of the chaperonin GroEL for the compact folding intermediates of a-lactalbumin. EMBO J. 13, 3192–3202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoshino, M., Kawata, Y., and Goto, Y. (1996) Interaction of GroEL with conformational states of horse cytochrome c. J. Mol. Biol. 262, 575–587.

    Article  CAS  PubMed  Google Scholar 

  33. Corrales, F. J., and Fersht, A. R. (1995) The folding of GroEL-bound barnase as a model for chaperonin-mediated protein folding. Proc. Natl. Acad. Sci. USA 92, 5326–5330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katsumata, K., Okazaki, A., and Kuwajima, K. (1996) Effect of GroEL on the re-folding kinetics of a-lactalbumin. J. Mol. Biol. 258, 827–838.

    Article  CAS  PubMed  Google Scholar 

  35. Sparrer, H., Lilie, H., and Buchner, J. (1996) Dynamics of the GroEL-protein complex: effects of nucleotides and folding mutants. J. Mol. Biol. 258, 74–87.

    Article  CAS  PubMed  Google Scholar 

  36. Goldberg, M. S., Zhang, J., Sondek, S., Matthews, C. R., Fox, R. O., and Horwich, A. L. (1997) Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL. Proc. Natl. Acad. Sci. USA 94, 1080–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ross, J. B. A., Szabo, A. G., and Hogue, C. W. V. (1997) Enhancement of protein spectra with tryptophan analogs: fluorescence spectroscopy of protein-protein interactions. Meth. Enzymol. 278, 151–202.

    Article  CAS  Google Scholar 

  38. Rye, H. S., Burston, S. G., Fenton, W. A., Beecham, J. M., Xu, Z., Sigler, P. B., and Horwich, A. L. (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388, 792–798.

    Article  CAS  PubMed  Google Scholar 

  39. Shortle, D. (1995) Staphylococcal Nuclease: A ahowcase of m-value effects. Adv. Protein Chem. 46, 217–247.

    Article  CAS  PubMed  Google Scholar 

  40. Green, S. M., Meeker, A. K., and Shortle, D. (1992) Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for muta-tional effects on the free energy of the denatured state. Biochemistry 31, 5717–5728.

    Article  CAS  PubMed  Google Scholar 

  41. Ybarra, J., and Horowitz, P. (1995) Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound polypeptides. J. Biol. Chem. 270, 22,962–22,967.

    Article  CAS  PubMed  Google Scholar 

  42. Clark, A. C., Hugo, E., and Frieden, C. (1996) Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperone GroEL. Biochemistry 35, 5893–5901.

    Article  CAS  PubMed  Google Scholar 

  43. Todd, M. J., and Lorimer, G. H. (1998) Criteria for assessing the purity and quality of GroEL. Meth. Enzymol. 290, 135–141.

    Article  CAS  Google Scholar 

  44. Shortle, D., and Meeker, A. K. (1989) Residual structure in large fragments of ataphylococcal nuclease: effects of amino acid substitutions. Biochemistry 28, 936–944.

    Article  CAS  PubMed  Google Scholar 

  45. Gill, S. C., and von Hippel, P. H. (1989) Calculation of protein extinction coefficients from amino acid sequence data analytical. Biochemistry 182, 319–326.

    CAS  Google Scholar 

  46. Johnson, M. L., and Fraser, S. G. (1985) Nonlinear least-squares analysis. Meth. Enzymol. 117, 301–342.

    Article  CAS  Google Scholar 

  47. Tanford, C. (1961) Physical Chemistry of Macromolecules, John Wiley and Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Hartmann, W.K., Eisenstein, E. (2000). Interaction of Nonnative Polypeptide Substrates with the Escherichia coli Chaperonin GroEL. In: Schneider, C. (eds) Chaperonin Protocols. Methods in Molecular Biology, vol 140. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-061-6:97

Download citation

  • DOI: https://doi.org/10.1385/1-59259-061-6:97

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-739-7

  • Online ISBN: 978-1-59259-061-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics