Skip to main content

Removing Trace Fluorescent Contaminants from GroEL Preparations

  • Protocol
Chaperonin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 140))

  • 696 Accesses

Abstract

Many applications require GroEL in a highly purified form (e.g., see Chapter 10). Since the GroEL sequence does not contain any tryptophan, the detection of tryptophan fluorescence in a preparation of GroEL can be used as a measurement of purity. Following the standard purification procedure as described in Chapter 3, the purified GroEL may show significant tryptophan fluorescence, which has been suggested to be owing to peptides bound to GroEL. An accurate spectroscopic quantification of the GroEL concentration or applications of GroEL in fluorescence measurements require further purification in order to remove traces of tryptophan fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lissin, N. M., Venyaminov, S., and Girshovich, A. S. (1990) (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature 348, 339–342.

    Article  CAS  PubMed  Google Scholar 

  2. Ybarra, J. and Horowitz, P. M. (1995) Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides. J. Biol. Chem. 270, 22,962–22,967.

    Article  CAS  PubMed  Google Scholar 

  3. Ybarra, J. and Horowitz, P. M. (1995) Refolding and reassembly of active chaperonin GroEL after denaturation. J. Biol. Chem. 270, 22,113–22,115.

    Article  CAS  PubMed  Google Scholar 

  4. Weissman, J. S., Hohl, C. M., Kovalenko, O., Kashi, Y., Chen, S., Braig, K., et al. (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83, 577–587.

    Article  CAS  PubMed  Google Scholar 

  5. Clark, A. C., Hugo, E., and Frieden, C. (1996) Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL. Biochemistry 35, 5893–5901.

    Article  CAS  PubMed  Google Scholar 

  6. Clark, A. C. and Frieden, C. (1997) GroEL-mediated folding of structurally homologous dihydrofolate reductases. J. Mol. Biol. 268, 512–525.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Weber, F. (2000). Removing Trace Fluorescent Contaminants from GroEL Preparations. In: Schneider, C. (eds) Chaperonin Protocols. Methods in Molecular Biology, vol 140. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-061-6:63

Download citation

  • DOI: https://doi.org/10.1385/1-59259-061-6:63

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-739-7

  • Online ISBN: 978-1-59259-061-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics