Skip to main content

Analysis of Eukaryotic Molecular Chaperone Complexes Involved in Actin Folding

  • Protocol
Chaperonin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 140))

  • 695 Accesses

Abstract

Actin, the most abundant protein of eukaryotes, plays critical roles in muscle contraction and in the movement of and within cells, including ameboid locomotion, protoplasmic streaming, migration of cellular organelles and chromosomes, formation of cell evaginations, and stabilization of cell shape. The dynamics of actin filament assembly and disassembly, as well as the organization of the actin cytoskeleton into bundles and networks of filaments, are highly complex, being regulated by a large number of actin crosslinking, capping, and severing proteins (1, 2). Interestingly, the biogenesis of actin also depends on at least two accessory proteins; the first to be described is the eukaryotic cytosolic chaperonin known as TCP-1 ring complex (TRiC) or chaperonin-containing TCP-1 (CTT), which is also involved in tubulin biogenesis (310). A second component involved in actin biogenesis has been recently identified independently by two groups. In a screen for S. cerevisiae mutants that are synthetically lethal with a mutant allele of γ-tubulin, Geissler et al. (11) identified five genes that encode proteins that assemble into a heterooligomeric complex named Gim-complex (GimC; Gim is an acronym for genes involved in microtubule biogenesis). Deletion of GIM genes causes both microtubule and actin cytoskeletal defects, a property also observed for genes encoding defective TRiC subunits (9 1214). In addition, synthetic lethality is observed with certain combinations of GIM and TRiC gene mutations. Vainberg et al. (15) reported on the purification of the mammalian homolog of GimC from bovine testis based on its ability to form a stable binary complex with unfolded ß-actin. The chaperone complex, named prefoldin (PFD) because of its ability to transfer unfolded actin to the chaperonin TRiC for subsequent folding to the native state, consists of six proteins, PFD1-6. Although TRiC is apparently both necessary and sufficient for the ATP-dependent folding of actin in vitro, it is likely that in vivo both GimC/PFD and TRiC cooperate to ensure that actin reaches its native state following its synthesis. Additional components may be involved, for instance, an unidentified protein that for the purpose of this chapter, is referred to as IBP (intermediate mobility actin binding protein) because of its ability to form a complex with denatured actin that migrates on a native gel between the TRiC-actin and GimC-actin complexes. Here, methods for the detection and analysis of unfolded actin binding proteins are presented. In Chapters 17, 20, and 21, protocols for purifying TRiC from bovine testis, as well as GimC/PFD from S. cerevisiae and bovine testis are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pollard, T. D., Almo, S., Quirk, S., Vinson, V., and Lattman, E. E. (1994) Structure of actin binding proteins: insights about function at atomic resolution. Annu. Rev. Cell Biol. 10, 207–249.

    Article  CAS  PubMed  Google Scholar 

  2. Schafer, D. A. and Cooper, J. A. (1995) Control of actin assembly at filament ends. Annu. Rev. Cell Biol. 11, 497–518.

    Article  CAS  Google Scholar 

  3. Gao, Y., Thomas, J. O., Chow, R. L., Lee, G. H., and Cowan, N. J. (1992) A cytoplasmic chaperonin that catalyzes ß-actin folding. Cell 69, 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  4. Lewis, V. A., Hynes, G. M., Zheng, D., Saibil, H., and Willison, K. (1992) T-complex polypeptide-1 is a subunit of a heterotrimeric particle in the eukaryotic cytosol. Nature 358, 249–252.

    Article  CAS  PubMed  Google Scholar 

  5. Yaffe, M. B., Farr, G. W., Miklos, D., Horwich, A. L., Sternlicht, M. L., and Sternlicht, H. (1992) TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358, 245–248.

    Article  CAS  PubMed  Google Scholar 

  6. Frydman, J., Nimmesger, E., Erdjument-Bromage, H., Wall, J. S., Tempst, P., and Hartl, F.-U. (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 11, 4767–4778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rommelaere, H., Van Troys, M., Gao, Y., Melki, R., Cowan, N. J., Vandekerckhove, J., et al. (1993) Eukaryotic cytosolic chaperonin contains t-complex polypeptide 1 and seven related subunits. Proc. Natl. Acad. Sci. USA 90, 11,975–11,979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kubota, H., Hynes, G., Carne, A., Ashworth, A., and Willison, K. (1994) Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr. Biol. 4, 89–99.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, X., Sullivan, D. S., and Huffaker, T. C. (1994) Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc. Natl. Acad. USA 91, 9111–9115.

    Article  CAS  Google Scholar 

  10. Frydman, J. and Hartl, F.-U. (1996) Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science 272, 1497–1502.

    Article  CAS  PubMed  Google Scholar 

  11. Geissler S., Siegers, K., and Schiebel, E. (1998) A novel protein complex promoting formation of functional a-and y-tubulin. EMBO J. 17, 952–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ursic, D. and Culbertson, M. R. (1991) The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes. Mol. Cell Biol.11, 2629–2640.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, W. Z., Lin, P., Frydman, J., Boal, T. R., Cardillo, T. S., Richard, L. M., et al. (1994) Tcp20, a subunit of the eukaryotic TRiC chaperonin from humans and yeast. J. Biol. Chem. 269, 18,626–18,622.

    Article  Google Scholar 

  14. Miklos, D., Caplan, S., Mertens, D., Hynes, G., Pitluk, Z., Kashi, Y., et al. (1994) Primary structure and function of a second essential member of the heterooligomeric TCP1 chaperonin complex of yeast, TCP1b. Proc. Natl. Acad. Sci. USA 91, 2743–2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vainberg, I. E., Lewis, S. A., Rommelaere, H., Ampe, C., Vandekerckhove, J., et al. (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93, 863–873.

    Article  CAS  PubMed  Google Scholar 

  16. Schoepfer, R. (1993) The pRSET family of T7 promoter expression vectors for Escherichia coli. Gene 124, 83–85.

    Article  CAS  PubMed  Google Scholar 

  17. Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorf, J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89.

    Article  CAS  PubMed  Google Scholar 

  18. Tian, G., Vainberg, I. E., Tap, W. D., Lewis, S. A., and Cowan N. J. (1995) Specificity in chaperonin-mediated protein folding. Nature 375, 250–253.

    Article  CAS  PubMed  Google Scholar 

  19. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  20. Cowan, N. J. (1998) Mammalian cytosolic chaperonin. Methods Enzymol. 290, 230–241.

    Article  CAS  PubMed  Google Scholar 

  21. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Leroux, M.R. (2000). Analysis of Eukaryotic Molecular Chaperone Complexes Involved in Actin Folding. In: Schneider, C. (eds) Chaperonin Protocols. Methods in Molecular Biology, vol 140. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-061-6:195

Download citation

  • DOI: https://doi.org/10.1385/1-59259-061-6:195

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-739-7

  • Online ISBN: 978-1-59259-061-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics