Skip to main content

Prevention of Rhodanese Aggregation by the Chaperonin GroEL

  • Protocol
Chaperonin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 140))

Abstract

A common feature of molecular chaperones is their ability to recognize hydrophobic surfaces of unfolded proteins to which they can bind, and thus, stabilize unfolded polypeptides at various levels of conformational compactness (1, 2). Depending on the substrate, different chaperone systems are required to allow folding to the native state. Some proteins fold with high yields in a chaperone-unassisted reaction (3, 4) whereas other proteins exhibit highly aggregation-sensitive structures. These proteins generally tend to aggregate and show higher yields of refolding in the presence of chaperones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellis, R. J. (1994) Roles of molecular chaperones in protein folding. Curr. Opinion Struct. Biol. 4, 117–122.

    Article  CAS  Google Scholar 

  2. Hartl, F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381, 571–975.

    Article  CAS  PubMed  Google Scholar 

  3. Ewalt, K. L., Hendrick, J. P., Houry, W. A., and Hartl, F. U. (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90, 491–500.

    Article  CAS  PubMed  Google Scholar 

  4. Netzer, W. J. and Hartl, F. U. (1998) Protein folding in the cytosol: chaperonin-dependent and-independent mechanisms. Trends Biochem. Sci. 23, 68–73.

    Article  CAS  PubMed  Google Scholar 

  5. Fenton, W. A. and Horwich, A. L. (1997) GroEL-mediated protein folding. Protein Sci. 6, 743–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bukau, B. and Horwich, A. L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366.

    Article  CAS  PubMed  Google Scholar 

  7. Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M. K., and Hartl, F. U. (1992) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356, 683–689.

    Article  CAS  PubMed  Google Scholar 

  8. Veinger, L., Diamant, S., Buchner, J., and Goloubinoff, P. (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11,032–11,037.

    Article  CAS  PubMed  Google Scholar 

  9. Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F. X., et al. (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  10. Glover, J. R. and Lindquist, S. (1998) Hsp104, Hsp70, and Hsp40-a novel chap erone system that rescues previously aggregated proteins. Cell 94, 73–82.

    Article  CAS  PubMed  Google Scholar 

  11. Weber, F., Keppel, F., Georgopoulos, C., Hayer-Hartl, M. K., and Hartl, F. U. (1998) The oligomeric structure of GroEL-GroES is required for biologically significant chaperonin function in protein folding. Nature Struct. Biol. 5, 977–985.

    Article  CAS  PubMed  Google Scholar 

  12. Horowitz, P. M. (1995) Chaperonin-assisted protein folding of the enzyme rhodanese by GroEL/GroES. Meth. Mol. Biol. 40, 361–368.

    CAS  Google Scholar 

  13. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horowitz, P. and DeToma, F. (1970) Improved preparation of bovine liver rhodanese. J. Biol. Chem. 245, 984–985.

    Article  CAS  PubMed  Google Scholar 

  15. Kurzban, G. P. and Horowitz, P. M. (1991). Purification of bovine liver rhodanese by low-pH column chromatography. Protein Expression and Purification 2, 379–384.

    Article  CAS  PubMed  Google Scholar 

  16. Miller, D. M., Kurzban, G. P., Mendoza, J. A., Chirgwin, J. M., Hardies, S. C., and Horowitz, P. M. (1992) Recombinant bovine rhodanese: purification and comparison with bovine liver rhodanese. Biochim. Biophys. Acta 1121, 286–292.

    Article  CAS  PubMed  Google Scholar 

  17. Weissman, J. S., Kashi, Y., Fenton, W. A., and Horwich, A. L. (1994) GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78, 693–702.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Weber, F., Hayer-Hartl, M. (2000). Prevention of Rhodanese Aggregation by the Chaperonin GroEL. In: Schneider, C. (eds) Chaperonin Protocols. Methods in Molecular Biology, vol 140. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-061-6:111

Download citation

  • DOI: https://doi.org/10.1385/1-59259-061-6:111

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-739-7

  • Online ISBN: 978-1-59259-061-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics