Assay of Malate Dehydrogenase

A Substrate for the E. coli Chaperonins GroEL and GroES
  • Manajit Hayer-Hartl
Part of the Methods in Molecular Biology™ book series (MIMB, volume 140)

Abstract

Malate dehydrogenase (MDH) is found in all eukaryotic cells as two isozymes:mitochondrial (mMDH) and cytoplasmic (soluble, sMDH) (1). In constrast, prokaryotes contain only a single form of MDH. The crystal structures of MDH from Escherichia coli (2 3), porcine cytoplasm (4), porcine mitochondria (5 6), and Thermus flavus (7) have been solved and are essentially identical. Refer to ref. (8) for a comprehensive review on MDH.

Keywords

Zinc Hydrolysis Magnesium Albumin Arsenate 

References

  1. 1.
    Bleile, D. M., Foster, M., Brady, J. W., and Harrison, J. H. (1975) Identification of essential arginyl residues in cytoplasmic malate dehydrogenase with butane-dione. J. Biol. Chem. 250, 6222–6227.PubMedGoogle Scholar
  2. 2.
    Hall, M. D., Levitt, D. G., and Banaszak, L. J. (1992) Crystal structure of Escheri-chia coli malate dehydrogenase. A complex of the apoenzyme and citrate at 1.87 A resolution. J. Mol. Biol. 226, 867–882.PubMedCrossRefGoogle Scholar
  3. 3.
    Hall, M. D. and Banaszak, L. J. (1993) Crystal structure of a ternary complex of Escherichia coli malate dehydrogenase citrate and NAD at 1.9 A resolution. J. Mol. Biol. 232, 213–222.PubMedCrossRefGoogle Scholar
  4. 4.
    Birktoft, J. J., Rhodes, G., and Banaszak, L. J. (1989) Refined crystal structure of cytoplasmic malate dehydrogenase at 2.5-A resolution. Biochemistry 28, 6065–6081.PubMedCrossRefGoogle Scholar
  5. 5.
    Roderick, S. L. and Banaszak, L. J. (1986) The three-dimensional structure of porcine heart mitochondrial malate dehydrogenase at 3.0-A resolution. J. Biol. Chem. 261, 9461–9464.PubMedGoogle Scholar
  6. 6.
    Gleason, W. B., Fu, Z., Birktoft, J., and Banaszak, L. (1994) Refined crystal structure of mitochondrial malate dehydrogenase from porcine heart and the consensus structure for dicarboxylic acid oxidoreductases. Biochemistry 33, 2078–2088.PubMedCrossRefGoogle Scholar
  7. 7.
    Kelly, C. A., Nishiyama, M., Ohnishi, Y., Beppu, T., and Birktoft, J. J. (1993) Determinants of protein thermostability observed in the 1.9-A crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. Biochem-istry 32, 3913–3922.CrossRefGoogle Scholar
  8. 8.
    Goward, C. R. and Nicholls, D. J. (1994) Malate dehydrogenase: a model for structure, evolution, and catalysis. Protein Sci. 3, 1883–1888.PubMedCrossRefGoogle Scholar
  9. 9.
    Veinger, L., Diamant, S., Buchner, J., and Goloubinoff, P. (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11,032–11,037.PubMedCrossRefGoogle Scholar
  10. 10.
    Rye, H. S., Burston, S. G., Fenton, W. A., Beechem, J. M., Xu, Z., Sigler, P. B., et al. (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL [see comments]. Nature 388, 792–798.PubMedCrossRefGoogle Scholar
  11. 11.
    Ranson, N. A., Burston, S. G., and Clarke, A. R. (1997) Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction. J. Mol. Biol. 266, 656–664.PubMedCrossRefGoogle Scholar
  12. 12.
    Hartman, D. J., Surin, B. P., Dixon, N. E., Hoogenraad, N. J., and Hoj, P. B. (1993) Substoichiometric amounts of the molecular chaperones GroEL and GroES prevent thermal denaturation and aggregation of mammalian mitochondrial malate dehydrogenase in vitro. Proc. Natl. Acad. Sci. USA 90, 2276–2280.PubMedCrossRefGoogle Scholar
  13. 13.
    Bruce, B. D. and Churchich, J. (1997) Characterization of the molecular-chaper-one function of the heat-shock-cognate-70-interacting protein. Eur. J. Biochem. 245, 738–744.PubMedCrossRefGoogle Scholar
  14. 14.
    Gietl, C., Seidel, C., and Svendsen, I. (1996) Plant glyoxysomal but not mitochondrial malate dehydrogenase can fold without chaperone assistance. Biochim. Biophys. Acta 1274, 48–58.PubMedCrossRefGoogle Scholar
  15. 15.
    Diamant, S., Azem, A., Weiss, C., and Goloubinoff, P. (1995) Increased efficiency of GroE-assisted protein folding by manganese ions. J. Biol. Chem. 270, 28,387–28,391.PubMedCrossRefGoogle Scholar
  16. 16.
    Ranson, N. A., Dunster, N. J., Burston, S. G., and Clarke, A. R. (1995) Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds. J. Mol. Biol. 250, 581–586.PubMedCrossRefGoogle Scholar
  17. 17.
    Schmidt, M., Buchner, J., Todd, M. J., Lorimer, G. H., and Viitanen, P. V. (1994) On the role of groES in the chaperonin-assisted folding reaction. Three case studies. J. Biol. Chem. 269, 10,304–10,311.PubMedGoogle Scholar
  18. 18.
    Peralta, D., Hartman, D. J., Hoogenraad, N. J., and Hoj, P. B. (1994) Generation of a stable folding intermediate which can be rescued by the chaperonins GroEL and GroES. FEBS Lett. 339, 45–49.PubMedCrossRefGoogle Scholar
  19. 19.
    Hutchinson, J. P., el-Thaher, T. S., and Miller, A. D. (1994) Refolding and recognition of mitochondrial malate dehydrogenase by Escherichia coli chaperonins cpn 60 (groEL) and cpn10 (groES). Biochem.J. 302, 405–410.PubMedGoogle Scholar
  20. 20.
    Staniforth, R. A., Cortes, A., Burston, S. G., Atkinson, T., Holbrook, J. J., and Clarke, A. R. (1994) The stability and hydrophobicity of cytosolic and mitochondrial malate dehydrogenases and their relation to chaperonin-assisted folding. FEBS Letts. 344, 129–135.CrossRefGoogle Scholar
  21. 21.
    Devenyi, T., Rogers, S. J., and Wolfe, R. G. (1966) Structural studies of pig heart malate dehydrogenase. Nature 210, 489–491.PubMedCrossRefGoogle Scholar
  22. 22.
    Eberhardt, N. L. and Wolfe, R. G. (1975) Malate dehydrogenase, circular dichro-ism difference spectra of porcine heart mitochondrial and supernatant enzymes, binary enzyme-coenzyme, and ternary enzyme-coenzyme-substrate analog complexes. J. Biol. Chem. 250, 2987–2992.PubMedGoogle Scholar
  23. 23.
    McEvily, A. J., Mullinax, T. R., Dulin, D. R., and Harrison, J. H. (1985) Regulation of mitochondrial malate dehydrogenase: kinetic modulation independent of subunit interaction. Arch. Biochem. Biophys. 238, 229–236.PubMedCrossRefGoogle Scholar
  24. 24.
    Blonde, D. J., Kresack, E. J., and Kosicki, G. W. (1967) The effects of ions and freeze-thawing on supernatant and mitochondrial malate dehydrogenase. Can. J. Biochem. 45, 641–650.PubMedGoogle Scholar
  25. 25.
    Miller, A. D., Maghlaoui, K., Albanese, G., Kleinjan, D. A., and Smith, C. (1993) Escherichia coli chaperonins cpn60 (groEL) and cpn 10 (groES) do not catalyse the refolding of mitochondrial malate dehydrogenase. Biochem. J. 291, 139–144.PubMedGoogle Scholar
  26. 26.
    Weber, F. K., Keppel, F., Georgopoulos, C., Hayer-Hartl, M. K., and Hartl, F. U. (1998) The oligomeric structure of GroEL-GroES is required for biologically significant chaperonin function in protein folding. Nature Struct. Biol. 5(11), 977–985.CrossRefGoogle Scholar
  27. 27.
    Smith, A. F. (1983) Malate to oxaloacetate reation, in Methods of Enzymatic Analysis, 3rd ed., vol. 3, (Bergmeyer, H. U., ed.), pp. 163–171.Google Scholar
  28. 28.
    Bergmeyer, H. U. A. B., E. (1983) Oxalate to malate reation, in Methods of Enzymatic Analysis, 3rd ed., vol. 3 (Bergmeyer, H. U., ed), pp. 171–175.Google Scholar
  29. 29.
    Jaenicke, R., Rudolph, R., and Heider, I. (1979) Quaternary structure, subunit activity, and in vitro association of porcine mitochondrial malic dehydrogenase. Biochemistry 18, 1217–1223.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Manajit Hayer-Hartl
    • 1
  1. 1.Department of Cellular BiochemistryMax Planck Institute of BiochemistyMartinsriedGermany

Personalised recommendations