Skip to main content

Toxin-Induced Death of Neurotrophin-Sensitive Neurons

  • Protocol
Neurotrophin Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 169))

  • 372 Accesses

Abstract

Selective destruction of neurons based on the use of targeted toxins has proven successful for several types of neurons (1). This chapter will describe the use of an immunotoxin to selectively destroy rat neurons that express the low-affinity neurotrophin receptor (p75NTR) (2). This immunotoxin consists of a monoclonal antibody disulfide coupled to a ribosome inactivating protein. The most extensively used and studied version uses the antibody 192 IgG originally developed as an antibody to a rat NGF-binding protein (3). 192 IgG has been extensively used to study rat p75NTR. Results of these studies have demonstrated p75NTR expression on a variety of neurotrophin-responsive cells, including sympathetic ganglion neurons, some primary sensory neurons, and cholinergic neurons of the basal forebrain. p75NTR also is expressed on cells not known to be responsive to neurotrophins, such as cerebellar Purkinje neurons and numerous other tissues during development (4). Thus, producing selective lesions using 192 IgG also requires restricting application of the immunotoxin to the region of the target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiley, R. G. and Lappi, D. A. (1994) Suicide transport and immunolesioning. R.G. Landes Co., Austin, TX.

    Google Scholar 

  2. Wiley, R. G., Oeltmann, T. N., and Lappi, D. A. (1991) Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Res. 562, 149–153.

    Article  PubMed  CAS  Google Scholar 

  3. Chandler, C. E., Parsons, L. M., Hosang, M., and Shooter, E. M. (1984) A monoclonal antibody modulates the interaction of nerve growth factor with PC 12 cells. J. Biol. Chem. 259, 6882–6889.

    PubMed  CAS  Google Scholar 

  4. Cuello, A. C., Pioro, E. P., and Ribeiro-da-Silva, A. (1990) Cellular and subcellular localization of nerve growth factor receptor-like immunoreactivity in the rat CNS. Neurochem. Int. 17, 205–213.

    Article  CAS  Google Scholar 

  5. Endo, Y., Mitsui, K., Motizuki, M., and Tsurugi, K. (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. J. Biol. Chem. 262, 5908–5912.

    PubMed  CAS  Google Scholar 

  6. Eiklid, K., Olsnes, S., and Pihl, A. (1980) Entry of lethal doses of abrin, ricin and modeccin into the cytosol of HeLa cells. Exp. Cell Res. 126, 321–326.

    Article  PubMed  CAS  Google Scholar 

  7. Wiley, R. G. (1992) Neural lesioning with ribosome-inactivating proteins: suicide transport and immunolesioning. Trends Neurosci. 15, 285–290.

    Article  PubMed  CAS  Google Scholar 

  8. Siegall, C. B., Wolff, E. A., Gawlak, S. L., Paul, L., Chace, D., and Mixan, B. (1995) Immunotoxins as cancer chemotherapeutic agents. Drug Dev. Res. 34, 210–219.

    Article  CAS  Google Scholar 

  9. Lappi, D. A., Esch, F. S., Barbieri, L., Stirpe, F., and Soria, M. (1985) Characterization of a Saponaria officinalis seed ribosome-inactivating protein: immunoreactivity and sequence homologies. Biochem. Biophys. Res. Commun. 129, 934–942.

    Article  PubMed  CAS  Google Scholar 

  10. Wiley, R. G. (1997) Findings about the cholinergic basal forebrain using immunotoxin to the nerve growth factor receptor. Ann. NY Ac ad. Sci. 835, 20–29.

    Article  CAS  Google Scholar 

  11. Wiley, R. G. and Lappi, D. A. (1997) Destruction of neurokinin-1 receptor expressing cells in vitro and in vivo using substance P-saporin in rats. Neurosci. Lett. 230, 97–100.

    Article  PubMed  CAS  Google Scholar 

  12. Mantyh, P. W., Rogers, S. D., Honore, P., Allen, B. J., Ghilardi, J. R., Li, J., et al. (1997) Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278, 275–279.

    Article  PubMed  CAS  Google Scholar 

  13. Shiosaka, S. (1992) Attempts to make models for Alzheimer’s disease. Neurosci. Res. 13, 237–255.

    Article  PubMed  CAS  Google Scholar 

  14. DiStefano, P. S., Schweitzer, J. B., Taniuchi, M., and Johnson, E. M., Jr. (1985) Selective destruction of nerve growth factor receptor-bearing cells in vitro using a hybrid toxin composed of ricin A chain and a monoclonal antibody against the nerve growth factor receptor. J. Cell Biol. 101, 1107–1114.

    Article  PubMed  CAS  Google Scholar 

  15. Schweitzer, J. B. (1987) Nerve growth factor receptor-mediated transport from cerebrospinal fluid to basal forebrain neurons. Brain Res. 423, 309–317.

    Article  PubMed  CAS  Google Scholar 

  16. Schweitzer, J. B. (1989) Nerve growth factor receptor-mediated transport from CSF labels cholinergic neurons: direct demonstration by a double-labeling study. Brain Res. 490, 390–396.

    Article  PubMed  CAS  Google Scholar 

  17. Thorpe, P. E., Brown, A. N. F., Bremner, J. A. G., Foxwell, B. M. J., and Stirpe, F. (1985) An immunotoxin composed of monoclonal anti-Thy 1.1 antibody and a ribosome-inactivating protein from Saponaria officinalis: potent antitumor effects in vitro and in vivo. J. Natl. Cancer Inst. 75, 151–159.

    PubMed  CAS  Google Scholar 

  18. Wiley, R. G. and Lappi, D. A. (1993) Preparation of anti-neuronal immunotoxins for selective neural immunolesioning. Neurosci. Protocols(93-0202), 1–11.

    Google Scholar 

  19. Heckers, S., Ohtake, T., Wiley, R. G., Lappi, D. A., Geula, C., and Mesulam, M. M. (1994) Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. J. Neurosci. 14, 1271–1289.

    Google Scholar 

  20. Greeson, D. M., Moix, L., Meier, M., Armstrong, D. M., and Wiley, R. G. (1992) A continuing signal maintains NGF receptor expression in hypoglossal motor neurons after crush injury. Brain Res. 594, 351–355.

    Article  PubMed  CAS  Google Scholar 

  21. Lee, M. G., Chrobak, J. J., Sik, A., Wiley, R. G., and Buzsáki, G. (1994) Hippoc-ampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 62, 1033–1047.

    Article  PubMed  CAS  Google Scholar 

  22. Harrison, M. B., Roberts, R. C., and Wiley, R. G. (1993) A selective lesion of striatonigral neurons decreases presynaptic binding of [3H]hemicholinium-3 to striatal interneurons. Brain Res. 630, 169–177.

    Article  PubMed  CAS  Google Scholar 

  23. Book, A. A., Wiley, R. G., and Schweitzer, J. B. (1995) 192 IgG-saporin. 2. Neuropathology in the rat brain. Acta Neuropathol. (Berl.) 89, 519–526.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Wiley, R.G. (2001). Toxin-Induced Death of Neurotrophin-Sensitive Neurons. In: Rush, R.A. (eds) Neurotrophin Protocols. Methods in Molecular Biology™, vol 169. Humana Press. https://doi.org/10.1385/1-59259-060-8:217

Download citation

  • DOI: https://doi.org/10.1385/1-59259-060-8:217

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-699-4

  • Online ISBN: 978-1-59259-060-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics