Skip to main content

Identification of the Sites of Phosphorylation in Proteins Using High Performance Liquid Chromatography and Mass Spectrometry

  • Protocol
Protein Kinase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 124))

  • 660 Accesses

Abstract

After incubation of cells with 32P-labeled inorganic phosphate, it is possible to identify in vivo radiolabeled phosphoproteins. Generally, after the cells are lysed the phosphoprotein can be separated by sodium dodecyl sulfate (SDS) gel electrophoresis and a rough estimate of the size of the phosphoprotein can be gainnted. In order to determine the phosphorylated residues in the protein, the radiolabeled band can be transferred to a membrane, hydrolyzed with trypsin (or another suitable enzyme), and the two-dimensional (2D) map establishnted. The phosphopeptides observed on the 2D map can be tentatively correlated with expected tryptic fragments, based on their hydrophobicity and charge. A number of protocols have been developed to refine the correlation of the expected fragments to phosphopeptides present on the 2D map. For example, phospho-amino acid analysis of individual species present on the 2D map can be used to identify the type of phosphorylated residues present. In addition, manual Edman degradation can be performed on phosphopeptides after they are removed from the 2D map in order to identify the position of the 32P-containing residue. This information can be used to help determine the position of the phosphorylated residue when more than one such residue is present in the tentatively assigned fragment sequence. Armed with this information, mutational analysis can confirm the site of phosphorylation, again using 2D map analysis. Although the above protocols have been successfully utilized, difficulties can arise. For example, the 2D map may not have sufficient resolution to separate two different phosphopeptides. As a result, the manual Edman analysis may not take into account the heterogeneous nature of the sample extractnted. Alternatively, ambiguous results can be obtained from manual Edmanwhen more than five cycles are required to discriminate between two possible “tentatively assigned” fragments. Partial oxidation of cysteine, methionine and tryptophan residue-containing peptides may also complicate the interpretation of the 2D map. Finally, the correlation between the pI and the hydrophobicity of the fragments may not be sufficient information to direct the mutational analysis. Many of these problems can be resolved by high-sensitivity mass spectrometry (MS) analysis. Analysis of peptide mixtures with MS will generally clarify whether a sample is heterogeneous and delineate modifications such as phosphorylation and oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fenselau C., Heller D. N., Miller M. S., and White III H. B. (1985) Phosphorylation sites in riboflavin-binding protein characterized by fast atom bombardment. Anal. Biochem. 150,309–314.

    Article  PubMed  CAS  Google Scholar 

  2. Cohen P., Gibson B. W., and Holmes C. F. B. (1991) Analysis of the in vivo phosphorylation states of proteins by fast atom bombardment mass spectrometry and other techniques. Meth. Enzymol. 201,153–168.

    Article  PubMed  CAS  Google Scholar 

  3. Hillenkamp F. (1983) Ion formation from organic solids, in Springer Series in Chem. Phys. (Benninghoven A., ed.), Springer Verlag, NY, pp. 190–205.

    Google Scholar 

  4. Hillenkamp F., Karas M., Beavis R. C., and Chait B. T. (1993) Matrix associated laser desorption ionization mass spectrometry of biopolymers. Anal. Chem. 63,1193A–1203A.

    Article  Google Scholar 

  5. Dole M., Mack L. L., and Hines R. L. (1968) Molecular beams of macroions. J. Chem. Phys. 49, 2240–2249.

    Article  CAS  Google Scholar 

  6. Fenn J. B., Mann M., Meng C. K., Wong S. F., and Whitehouse C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.

    Article  PubMed  CAS  Google Scholar 

  7. Verma R., Annan R. S., Huddleston M. J., Carr S. A., Reynard G., and Deshaies R. J. (1997) Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278,455–460.

    Article  PubMed  CAS  Google Scholar 

  8. Huddleston M. J., Annan R. S., Bean M. F., and Carr S. A. (1993) Selective detection of phosphopeptides in complex mixtures by electrospray liquid chromatogra-phy/mass spectrometry. J. Am. Soc. Mass Spectrom. 4,710–717.

    Article  CAS  Google Scholar 

  9. Carr S. A., Huddleston M. J., and Annan R. S. (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal. Biochem. 239,180–192.

    Article  PubMed  CAS  Google Scholar 

  10. Annan R. S. and Carr S. A. (1997) The essential role of mass spectrometry in characterizing protein structure: mapping post-translational modifications. J. Prot. Chem. 16, 391–402.

    Article  CAS  Google Scholar 

  11. Rivier J., McClintock R., Galyean R., and Anderson H. (1984) Reversed phase HPLC: preparative purification of synthetic peptides. J. Chromatog. 288, 303–328.

    Article  CAS  Google Scholar 

  12. Stone K. L., Elliott J. I., Peterson G., McMurray W., and William K. R. (1990) Reversed-phase high-performance liquid chromatography for fractionation of enzymatic digests and chemical cleavage products of proteins, in Methods in Enzymology (McCloskey J. A., ed.), pp. 389–412.

    Google Scholar 

  13. Mercurio F., Zhu H., Murray B. W., Shevchenko A., Bennett B. L., Li J., et al. (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278, 860–866.

    Article  PubMed  CAS  Google Scholar 

  14. Nugent K. D. and Nugent P. W. (1990) Nanopreparative purification of peptides and proteins by HPLC. Pept. Res. 3, 242–248.

    PubMed  CAS  Google Scholar 

  15. Tong D., Moritz R. L., Eddes J. S., Reid G. E., Rasmussen R. K., Dorow D. S., and Simpson R. J. (1997) Fabrication of stable packed capillary reversed phase columns for protein structural analysis. J. Prot. Chem. 16, 425–431.

    Article  CAS  Google Scholar 

  16. Gale D. and Smith R. (1993) Small volume and low flow-rate electrospray ionization mass spectrometry of aqueous samples. Rapid Commun. Mass Spectrom. 7, 1017–1021.

    Article  CAS  Google Scholar 

  17. Wilm M. and Mann M. (1994) Int. J. Mass Spectrom. Ion Processes 136, 167–180.

    Article  CAS  Google Scholar 

  18. Alper J. (1998) Weighing DNA for fast genetic diagnosis. Science 279, 2044–2045.

    Article  PubMed  CAS  Google Scholar 

  19. Boyle W. J., Van der Greer P., and Hunter T. (1991) Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates, in Analysis of Protein Phosphorylation (Sefton B. M. and Hunter T., eds.) Academic, San Diego, CA, pp. 110–149.

    Chapter  Google Scholar 

  20. Matsudaira P. (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262, 10,035–10,038.

    PubMed  CAS  Google Scholar 

  21. Lee T. D. and Vemuri S. (1990) MacProMass: a computer program to correlate mass spectral data and protein structures. Biomed. Mass Spectrom. 19,639–645.

    Article  CAS  Google Scholar 

  22. Craig A. G., Engstrom Å., Lindeberg G., Bennich H., Serwe M., Hoffman Posorske E., et al. (1991) Plasma desorption mass spectrometry in monitoring peptide synthesis and phosphorylation reactions, in Methods in Protein Sequence Analysis (Jornvall H., Hoog J.-O., and Gustavsson A.-M., eds.), Birkhauser Verlag, Basel, pp. 275–284.

    Google Scholar 

  23. Craig A. G., Hoeger C. A., Miller C. L., Goedken T., Rivier J. E., and Fischer W. H. (1994) Monitoring protein kinase and phosphatase reactions with matrix assisted laser desorption/ionization and capillary zone electrophoresis: comparison of the detection efficiency of peptide-phosphopeptide mixtures. Biol. Mass Spectrom. 23, 519–528.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Grey Craig, A. (2000). Identification of the Sites of Phosphorylation in Proteins Using High Performance Liquid Chromatography and Mass Spectrometry. In: Reith, A.D. (eds) Protein Kinase Protocols. Methods in Molecular Biology™, vol 124. Humana Press. https://doi.org/10.1385/1-59259-059-4:87

Download citation

  • DOI: https://doi.org/10.1385/1-59259-059-4:87

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-700-7

  • Online ISBN: 978-1-59259-059-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics