Skip to main content

Cloning and Characterization of RTK Ligands Using Receptor-Alkaline Phosphatase Fusion Proteins

  • Protocol
Protein Kinase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 124))

Abstract

Receptor tyrosine kinases (RTKs) bind to their ligands with high affinity and specificity. Soluble receptor approaches exploit these biological properties to make affinity probes that can be used to detect or to purify the cognate ligands (1,2). In many respects, these soluble receptor reagents resemble antibodies, and they can be used in almost all the same types of procedure. They can also have important advantages over antibodies. They can be used to identify and clone previously unknown ligands of orphan receptors (1–9). They can be produced much more quickly than antibodies. Also, because they exploit natural receptor-ligand interactions, they can give information not available with antibodies, for example permitting quantitative characterization of ligandreceptor binding interactions (1,2,10), or allowing the simultaneous detection of multiple cross-reacting ligands in an embryo (5,11,12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flanagan J. G. and Leder P. (1990) The kit ligand: a cell surface molecule altered in Steel mutant fibroblasts. Cell 63, 185–194.

    Article  PubMed  CAS  Google Scholar 

  2. Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., and Seed B. (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61,1303–1313.

    Article  PubMed  CAS  Google Scholar 

  3. Armitage R. J., et al. (1992) Molecular and biological characterization of a murine ligand for CD40. Nature 357, 80–82.

    Article  PubMed  CAS  Google Scholar 

  4. Lyman S. D., et al. (1993) Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75, 1157–1167.

    Article  PubMed  CAS  Google Scholar 

  5. Cheng H.-J. and Flanagan J. G. (1994) Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 79, 157–168.

    Article  PubMed  CAS  Google Scholar 

  6. Bartley T. D., et al. (1994) B61 is a ligand for the ECK receptor protein-tyrosine kinase. Nature 368, 558–560.

    Article  PubMed  CAS  Google Scholar 

  7. Davis S., Gale N. W., Aldrich T. H., Maisonpierre P. C., Lhotak V., Pawson T., et al. (1994) Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266, 816–819.

    Article  PubMed  CAS  Google Scholar 

  8. Winslow J. W., Moran P., Valverde J., Shih A., Yuan J. Q., Wong S. C., et al. (1995) Cloning of AL-1, a ligand for an Eph-related tyrosine kinase receptor involved in axon bundle formation. Neuron 14, 973–981.

    Article  PubMed  CAS  Google Scholar 

  9. Davis S., Aldrich T. H., Jones P. F., Acheson A., Compton D. L., Jain V., et al. (1996) Isolation of angiopoietin-1, a ligand for the tie-2 receptor, by secretion-trap expression cloning. Cell 87, 1161–1169.

    Article  PubMed  CAS  Google Scholar 

  10. Wang Z. E., Myles G. M., Brandt C. S., Lioubin M. N., and Rohrschneider L. (1993) Identification of the ligand-binding regions in the macrophage colony-stimulating factor receptor extracellular domain. Mol. Cell. Biol. 13, 5348–5359.

    PubMed  CAS  Google Scholar 

  11. Cheng H.-J., Nakamoto M., Bergemann A. D., and Flanagan J. G. (1995) Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82, 371–381.

    Article  PubMed  CAS  Google Scholar 

  12. Gale N. W., Holland S. J., Valenzuela D. M., Flenniken A., Pan L., Ryan T. E., et al. (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17,9–19.

    Article  PubMed  CAS  Google Scholar 

  13. Berger J., Howard A. D., Brink L., Gerber L., Hauber J., Cullen B. R., and Udenfriend S. (1988) COOH-terminal requirements for the correct processing of a phosphatidylinositol-glycan anchored membrane protein. J. Biol. Chem. 263, 10,016–10,021.

    PubMed  CAS  Google Scholar 

  14. Flanagan J. G., Chan D. C., and Leder P. (1991) Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell 64,1025–1035.

    Article  PubMed  CAS  Google Scholar 

  15. Chiang M.-K. and Flanagan J. G. (1995) Interactions between the Flk-1 receptor, vascular endothelial growth factor, and cell surface proteoglycan identified with a soluble receptor reagent. Growth Factors 12,1–10.

    Article  PubMed  CAS  Google Scholar 

  16. Bergemann A. D., Cheng H.-J., Brambilla R., Klein R., and Flanagan J. G. (1995) ELF-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites. Mol. Cell. Biol. 15,4921–4929.

    PubMed  CAS  Google Scholar 

  17. He Z. G. and Tessier-Lavigne M. (1997) Neuropilin is a receptor for the axonal chemorepellent semaphorin III. Cell 90,739–751.

    Article  PubMed  CAS  Google Scholar 

  18. Kolodkin A. L., Levengood D. V., Rowe E. G., Tai Y. T., Giger R. J., and Ginty D. D. (1997) Neuropilin is a semaphorin III receptor. Cell 90, 753–762.

    Article  PubMed  CAS  Google Scholar 

  19. Koppel A. M., Feiner L., Kobayashi H., and Raper J. A. (1997) A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron 19,531–537.

    Article  PubMed  CAS  Google Scholar 

  20. Aruffo A. and Seed B. (1987) Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc. Natl. Acad. Sci. USA 84,8573–8577.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Cheng, HJ., Flanagan, J.G. (2000). Cloning and Characterization of RTK Ligands Using Receptor-Alkaline Phosphatase Fusion Proteins. In: Reith, A.D. (eds) Protein Kinase Protocols. Methods in Molecular Biology™, vol 124. Humana Press. https://doi.org/10.1385/1-59259-059-4:313

Download citation

  • DOI: https://doi.org/10.1385/1-59259-059-4:313

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-700-7

  • Online ISBN: 978-1-59259-059-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics