Skip to main content

cDNA Expression Cloning and Characterization of Phosphorylation Dependent Protein Interactors Using the Yeast Tribrid System

  • Protocol
Protein Kinase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 124))

  • 658 Accesses

Abstract

The yeast two-hybrid system has been utilized by many laboratories in the characterization of protein-protein interactions that occur in eukaryotic and prokaryotic cell systems. In addition, the two-hybrid system has been used to isolate and characterize novel interacting proteins to aid in the understanding of biochemical signaling pathways for various receptors and enzymes. The interacting components are fused to inert components of the transcriptional apparatus. One of the components is fused to a DNA-binding domain and is generally referred to as the “bait.” The second protein is fused to a transcriptional activation domain and is referred to as the “fish” or the “prey.” When there is an association between the “bait” and the “prey,” the DNA-binding domain and the transcriptional-activation domain are brought into close proximity to activate the transcription of the reporter gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fields S. and Song O.-K. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  2. Bai C. and Elledge S. J. (1997) Searching for interacting proteins with the two-hybrid system I, in The Yeast Two-Hybrid System (Bartel P. L. and Fields S., eds.), Oxford University Press, New York, pp. 11–28.

    Google Scholar 

  3. Brachmann R. K. and Boeke J. D. (1997) Tag games in yeast: the two-hybrid system and beyond. Curr. Opin. Biotechnol. 8, 561–568.

    Article  PubMed  CAS  Google Scholar 

  4. Hunter T. (1995) Protein kinases and phsophatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225–236.

    Article  PubMed  CAS  Google Scholar 

  5. Heldin C.-H. (1995). Dimerization of Cell Surface Receptors in Signal Transduction. Cell 80, 213–223.

    Article  PubMed  CAS  Google Scholar 

  6. Gartner A., Nsamyth K., and Ammerer G. (1992) Signal transduction in Saccha-romyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes. Dev. 6, 1280–1292.

    Article  PubMed  CAS  Google Scholar 

  7. Lim M.-Y., Dailey D., Martin G. S., and Thorner J. (1993) Yeast MCK1 protein kinase autophosphorylates at tyrosine and serine but phosphorylates exogenous substrates at serine and threonine. J. Biol. Chem. 268, 21,155–21,164.

    PubMed  CAS  Google Scholar 

  8. Pandey A., Lazar D. F., Saltiel A. R., and Dixit V. M. (1994) Activation of theEck receptor protein tyrosine kinase stimulates phosphatidylinositel 3-kinase activity. J. Biol. Chem. 269, 30,154–30,157.

    PubMed  CAS  Google Scholar 

  9. O’Neill T. J., Craparo A., and Gustafson T. A. (1995) Characterization of an interaction between insulin receptor substrate 1 and the insulin receptor by using the two-hybrid system. Mol. Cell. Biol. 14, 6433–6442.

    Google Scholar 

  10. Gustafson T. A., He W., Craparo A., Schaub C. D., and Oneill T. J. (1995) Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol. Cell. Biol. 15, 2500–2508.

    PubMed  CAS  Google Scholar 

  11. Pandey A., Duan H., Di Fiore P. P., and Dixit V. M. (1995) The ret receptor protein tyrosine kinase associates with the SH2-containing adapter protein Grb10. J. Biol. Chem. 270, 21461–21463.

    Article  PubMed  CAS  Google Scholar 

  12. Xing Z., Chen H.-C., Nowlen J. K., Taylor S. J., Shalloway D., and Guan J.-L. (1994) Direct Interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain. Mol. Biol. Cell 5, 413–421.

    PubMed  CAS  Google Scholar 

  13. Vasavada H. A., Ganguly S., Germino F. J., Wang Z. X., and Weissman S. M. (1991) A contingent replication assay for the detection of protein-protein interactions in animal cells. Proc. Natl. Acad. Sci. USA 88, 10,686–10,690.

    Article  PubMed  CAS  Google Scholar 

  14. Fearon E. R., Finkel T., Gillison M. L., Kennedy S. P., Casella J. F., Tomaselli G. F., et al. (1992) Karyoplasmic interaction selection strategy: a general strategy to detect protein-protein interactions in mammalian cells. Proc. Natl. Acad. Sci. USA 89, 7958–7962.

    Article  PubMed  CAS  Google Scholar 

  15. Tsan J. T., Wang Z., Jin Y., Hwang L.-Y., Bash R. O., and Baer R. (1997) Mammalian cells as hosts for two-hybrid studies of protein-protein interaction, in The Yeast Two-Hybrid System (Bartel P. L. and Fields S., eds.), Oxford University Press, New York, pp. 217–232.

    Google Scholar 

  16. Osborne M. A., Zenner G., Lubinus M., Zhang X., Songyang Z., Cantley L. C., et al. (1996) The inositol 5′-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation. J. Biol. Chem. 271, 29,271–29,278.

    Article  PubMed  CAS  Google Scholar 

  17. Osborne M. A., Dalton S., and Kochan J. P. (1995) The yeast tribrid system — genetic detection of trans-phosphorylated ITAM-SH2-interactions. Bio/Technology 13, 1474–1478.

    Article  PubMed  CAS  Google Scholar 

  18. Johnston M. (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiolog. Rev. 51:4, 458–476.

    Google Scholar 

  19. Dalton S. and Treisman R. (1992) Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 68, 597–612.

    Article  PubMed  CAS  Google Scholar 

  20. Russo P. and Sherman F. (1989) Transcription terminates near the poly(A) site in the CYC1 gene of the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86, 8348–8352.

    Article  PubMed  CAS  Google Scholar 

  21. Kalderon D., Roberts B. L., Richardson W. D., and Smith A. E. (1984) A short amino acid sequence able to specify nuclear location. Cell 39, 499–509.

    Article  PubMed  CAS  Google Scholar 

  22. Dalrymple M. A., Mcgeoch D. J., Davison A. J., and Preston C. M. (1985) DNA sequence of the herpes simplex virus type 1 gene whose product is responsible for transcriptional activation of immediate early promoters. Nucleic Acids Res. 13, 7865–7879.

    Article  PubMed  CAS  Google Scholar 

  23. Osborne M. A., Lubinus M., and Kochan J. P. (1997) Detection of protein-protein interactions dependent on post-translational modifications, in The Yeast Two-Hybrid System (Bartel P. L. and Fields S., eds.), Oxford University Press, New York, pp. 233–258.

    Google Scholar 

  24. Mizushima S. and Nagata S. (1990) pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18, 5322.

    Article  PubMed  CAS  Google Scholar 

  25. Sherman F. (1991) Getting started with yeast. Meth. Enzymol. 194, 3–21.

    Article  PubMed  CAS  Google Scholar 

  26. Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  27. Towbin H., Staehelin T., and Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  28. Zhu L., Gunn D., Kuchibhatla S. (1997) Constructing an activation domain-fusion library, in The Yeast Two-Hybrid System (Bartel P. L. and Fields S., eds.), Oxford University Press, New York, pp. 73–96.

    Google Scholar 

  29. Gubler U. and Chua A. O. (1991) The establishment of cDNA libraries in lambda gt10, in Essential Molecular Biology. A Practical Approach, vol. II (Brown T. A., ed.), Oxford University Press, New York, pp. 39–56.

    Google Scholar 

  30. Cullen B. R. (1987) Use of eukaryotic expression technology in the functional analysis of cloned genes. Meth. Enzymol. 152, 684–704.

    Article  PubMed  CAS  Google Scholar 

  31. Kaiser C., Michaelis S., and Mitchell A. (1994) Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  32. Wong C. and Naumovski L. (1997) Method to screen for relevant yeast two-hybrid-derived clones by coimmunoprecipitation and colocalization of epitope-tagged fragments — applications to Bcl-xL. Anal. Biochem. 252, 33–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Volpers, C., Lubinus, M., Osborne, M.A., Kochan, J.P. (2000). cDNA Expression Cloning and Characterization of Phosphorylation Dependent Protein Interactors Using the Yeast Tribrid System. In: Reith, A.D. (eds) Protein Kinase Protocols. Methods in Molecular Biology™, vol 124. Humana Press. https://doi.org/10.1385/1-59259-059-4:271

Download citation

  • DOI: https://doi.org/10.1385/1-59259-059-4:271

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-700-7

  • Online ISBN: 978-1-59259-059-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics