Skip to main content

Reactive Oxygen Release

  • Protocol
Chemokine Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 138))

Abstract

Monocytes, macrophages, neutrophils, and eosinophils are able to generate and release reactive oxygen species. The reactive oxygen species are generated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase which is activated by a number of different soluble and particulate agents. This activation results in the reduction of molecular oxygen to the potentially toxic oxygen species superoxide anion (O2 ), or hydrogen peroxide (H2O2), with NADPH serving as the electron donor. In the presence of eosinophil peroxidase, H2O2 may then give rise to the potentially cytotoxic hypohalous acids such as HOBr. The increase in oxygen consumption is termed the respiratory burst (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lundqvist H., Follin P., Khalfan L., and Dahlgren C. (1996) Phorbol myristate acetate—induces NADPH oxidase activity in human neutrophils: only half the story has been told. J. Leukoc. Biol. 59, 270–279.

    PubMed  CAS  Google Scholar 

  2. Remick D. G. and Villarete L. (1996) Regulation of cytokine gene expression by reative oxygen and reactive nitrogen intermediates. J. Leukoc. Biol. 59, 471–475.

    PubMed  CAS  Google Scholar 

  3. Lambeth J. D. (1988) Activation of the respiratory burst oxidase in neutrophils: on the role of membrane-derived second messaengers, Ca2+, and protein kinase. C. J. Bioenerg. Biomemb. 20, 709–733.

    Article  CAS  Google Scholar 

  4. Bieber T., de la Salle H., Wollenberg A., Hakimi J., Chizzonite R., Ring J., Hanau D., and de la Salle C. (1993) Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc epsilon RI). J. Exp. Med. 175, 1285–1290.

    Article  Google Scholar 

  5. Busse W. W. and Sedgwick J. B. (1992) Eosinophils in asthma. Ann. Allergy 286, 286–290.

    Google Scholar 

  6. Gleich G. J., Adolphoson C. R., and Leifermann K. M. (1993) The biology of the eosinophilic eosinophilic leukocyte. Annu. Rev. Med. 44, 85–101.

    Article  PubMed  CAS  Google Scholar 

  7. Romagnani S. (1997) The Th1/Th2 paradigm. Immunol. Today 18, 263–266.

    Article  PubMed  CAS  Google Scholar 

  8. Coyle A. J., Ackermann S., Burch R., Proud D., and Irvin C. G. (1995) Human eosinophil granule major basic protein and synthetic polycations induce airway hyperresponsiveness In vivo dependent on bradykinin generation. J. Clin. Invest. 95, 1735–1740.

    Article  PubMed  CAS  Google Scholar 

  9. Elsner J., Dichmann S., and Kapp A. (1995) Activation of the respiratory burst in human eosinophils by chemotaxins requires intracellular calcium fluxes. J. Invest. Dermatol. 105, 231–236.

    Article  PubMed  CAS  Google Scholar 

  10. Kapp A. (1993) The role of eosinophils in the pathogenesis of atopic dermatitis—eosinophil granule proteins as markers of disease activity. Allergy 48, 1–5.

    Article  PubMed  CAS  Google Scholar 

  11. Rochester C. L., Ackermann S. J., Zheng T., and Elias J. A. (1996) Eosinophil-fibroblast interactions—granule major basic protein interacts with IL-1 and transforming growth factor-beta in the stimulation of lung fibroblast IL-6-type cytokine production. J. Immunol. 156, 4449–4456.

    PubMed  CAS  Google Scholar 

  12. Rosenberg H. F. and Tiffany H. L. (1994) Characterization of the eosinophil granule proteins recognized by the activation-specific antibody EG2. J. Leukoc. Biol. 56, 502–506.

    PubMed  CAS  Google Scholar 

  13. Elsner J., Hochstetter R., Kimmig D., and Kapp A. (1996) Human eotaxin represents a potent activator of the respiratory burst of human eosinophils. Eur. J. Immunol. 26, 1919–1925.

    Article  PubMed  CAS  Google Scholar 

  14. Elsner J., Oppermann M., Czech W., Dobos G., Schöpf E., Norgauer J., and Kapp A. (1994) C3a activates reactive oxygen radical species production and intracellular calcium transients in human eosinophils. Eur. J. Immunol. 24, 518–522.

    Article  PubMed  CAS  Google Scholar 

  15. Kapp A., Zeck Kapp G., Czech W., and Schöpf E. (1994) The chemokine RANTES is more than a chemoattractant: Characterization of its effect on human eosinophil oxidative metabolism and morphology in comparison with IL-5 and GM-CSF. J. Invest. Dermatol. 102, 906–914.

    Article  PubMed  CAS  Google Scholar 

  16. Zeck Kapp G., Kroegel C., Riede U. N., and Kapp A. (1995) Mechanisms of human eosinophil activation by complement protein C5a and platelet-activating factor: similar functional responses are accompanied by different morphologic alterations. Allergy 50, 34–47.

    Article  PubMed  CAS  Google Scholar 

  17. Kernen P., Wymann M. P., von Tscharner V., Deranleau D. A., Tai P. C., Spry C. J., Dahinden C. A., and Baggiolini M. (1991) Shape changes, exocytosis, and cytosolic free calcium changes in stimulated eosinophils. J. Clin. Invest. 87, 2012–2017.

    Article  PubMed  CAS  Google Scholar 

  18. Nagata M., Sedgwick J. B., Bates M. E., Kita H., and Busse W. W. (1995) Eosinophil adhesion to vascular cell adhesion molecule-1 activates superoxide anion generation. J. Immunol. 155, 2194–2202.

    PubMed  CAS  Google Scholar 

  19. Thelen M., Wymann M. P., and Langen H. (1994) Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes. Proc. Natl. Acad. Sci. USA 91, 4960–4964.

    Article  PubMed  CAS  Google Scholar 

  20. Elsner J., Oppermann M., Czech W., and Kapp A. (1994) C3a activates the respiratory burst in human polymorphonuclear neutrophilic leukocytes via pertussis toxin-sensitive G-proteins. Blood 83, 3324–3331.

    PubMed  CAS  Google Scholar 

  21. Maly F. E., Urwyler A., Rolli H. P., Dahinden C., and de Weck A. L. (1988) A single-photon imaging system for the simultaneous quantitation of luminescent emissions from multiple samples. Anal. Biochem. 168, 462–469.

    Article  PubMed  CAS  Google Scholar 

  22. Wymann M. P., Kernen P., Deranleau D. A., and Baggiolini M. (1989) Respiratory burst oscillations in human neutrophils ad their correlation with fluctuations in apparent cell shape. J. Biol. Chem. 264, 15,829–15,834.

    PubMed  CAS  Google Scholar 

  23. Kapp A., Zeck Kapp G., Danner M., and Luger T. A. (1988) Human granulo-cyte-macrophage colony stimulating factor: An effective direct activator of human polymorphonuclear neutrophilic granulocytes. J. Invest. Dermatol. 91, 49–55.

    Article  PubMed  CAS  Google Scholar 

  24. Elsner J., Oppermann M., and Kapp A. (1996) Detection of C5a receptors on human eosinophils and inhibition of eosinophil effector functions by anti-C5a receptor (CD88) antibodies. Eur. J. Immunol. 26, 1560–1564.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Elsner, J., Kapp, A. (2000). Reactive Oxygen Release. In: Proudfoot, A.E.I., Wells, T.N.C., Power, C.A. (eds) Chemokine Protocols. Methods in Molecular Biology, vol 138. Humana Press. https://doi.org/10.1385/1-59259-058-6:153

Download citation

  • DOI: https://doi.org/10.1385/1-59259-058-6:153

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-722-9

  • Online ISBN: 978-1-59259-058-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics