Chemokine Inhibition of HIV Infection

  • Jacqueline D. Reeves
  • Graham Simmons
Part of the Methods in Molecular Biology book series (MIMB, volume 138)


Human immunodeficiency virus (HIV) is a member of the retro virus family, classified under the lentivirus genus. Retroviruses are enveloped RNA viruses, which contain a core of capsid proteins, viral RNA, and enzymes. All infectious retroviral virions contain an enzyme, reverse transcriptase, which catalyzes the formation of a complementary DNA strand from an RNA template. A double-stranded DNA copy of the viral RNA genome (proviral DNA) may then be integrated into and replicated with the host cell genome.


Human Immunodeficiency Virus Human Immunodeficiency Virus Infection Fusion Assay Human Immunodeficiency Virus Envelope Adherent Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., and Weiss R. A. (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312, 763–767.PubMedCrossRefGoogle Scholar
  2. 2.
    Simmons G., Wilkinson D., Reeves J. D., Dittmar M. T., Beddows S., Weber J., et al. (1996) Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J. Virol. 70, 8355–8360.PubMedGoogle Scholar
  3. 3.
    Tersmette M., de Goede R. E., Al B. J., Winkel I. N., Gruters R. A., Cuypers H. T., et al. (1988) Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J. Virol. 62, 2026–2032.PubMedGoogle Scholar
  4. 4.
    Walker C. M., Moody D. J., Stites D. P., and Levy J. A. (1986) CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234, 1563–1566.PubMedCrossRefGoogle Scholar
  5. 5.
    Cocchi F., DeVico A. L., Garzino Demo A., Arya S. K., Gallo R. C., and Lusso P. (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815.PubMedCrossRefGoogle Scholar
  6. 6.
    Feng Y., Broder C. C., Kennedy P. E., and Berger E. A. (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877.PubMedCrossRefGoogle Scholar
  7. 7.
    Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., et al. (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673.PubMedCrossRefGoogle Scholar
  8. 8.
    Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., et al. (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.PubMedCrossRefGoogle Scholar
  9. 9.
    Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., and Berger E. A. (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1 beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958.PubMedCrossRefGoogle Scholar
  10. 10.
    Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., et al. (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148.PubMedCrossRefGoogle Scholar
  11. 11.
    Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C., et al. (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158.PubMedCrossRefGoogle Scholar
  12. 12.
    Deng H. K., Unutmaz D., KewalRamani V. N., and Littman D. R. (1997) Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388, 296–300.PubMedCrossRefGoogle Scholar
  13. 13.
    Farzan M., Choe H., Martin K., Marcon L., Hofmann W., Karlsson G., et al. (1997) Two orphan seven-transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection. J. Exp. Med. 186, 405–411.PubMedCrossRefGoogle Scholar
  14. 14.
    Liao F., Alkhatib G., Peden K. W., Sharma G., Berger E. A., and Farber J. M. (1997) STRL33, A novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J. Exp. Med. 185, 2015–2023.PubMedCrossRefGoogle Scholar
  15. 15.
    Reeves J. D., McKnight A., Potempa S., Simmons G., Gray P. W., Power C. A., et al. (1997) CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virology 231, 130–134.PubMedCrossRefGoogle Scholar
  16. 16.
    Loetscher M., Amara A., Oberlin E., Brass E., Legler D. F., Loetscher P., et al. (1997) TYMSTR, a putative chemokine receptor selectively expressed in activated T cells, exhibits HIV-1 coreceptor function. Curr. Biol. 7, 652–660.PubMedCrossRefGoogle Scholar
  17. 17.
    Horuk R., Hesselgesser R., Zhou Y., Faulds D., Halks-Miller M., Harvey S., et al. (1998) The CC chemokine I-309 inhibits CCR8-dependent infection by diverse HIV-1 strains. J. Biol. Chem. 273, 386–391.PubMedCrossRefGoogle Scholar
  18. 18.
    McKnight A., Wilkinson D., Simmons G., Talbot S., Picard L., Ahuja M., et al. (1997) Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell type and virus strain dependent. J. Virol. 71, 1692–1696.PubMedGoogle Scholar
  19. 19.
    Connor R. I., Sheridan K. E., Ceradini D., Choe S., and Landau N. R. (1997) Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med. 185, 621–628.PubMedCrossRefGoogle Scholar
  20. 20.
    Rucker J., Edinger A. L., Sharron M., Lee B., Berson J. F., Yi Y., et al. (1997) Utilization of chemokine receptors, orphan receptors, and herpes virus-encoded receptors by diverse human and simian immunodeficiency viruses. J. Virol. 71, 8999–9007.PubMedGoogle Scholar
  21. 21.
    Berger E. A., Doms R. W., Fenyo E.-M., Korber B. T. M., Littman D. R., Moore J. P., et al. (1998) A new classification for HIV-1. Nature 391, 240.PubMedCrossRefGoogle Scholar
  22. 22.
    Detels R., Liu Z., Hennessey K., Kan J., Visscher B. R., Taylor J. M., et al. (1994) Resistance to HIV-1 infection. Multicenter AIDS Cohort Study. J. Acquir. Immune Defic. Syndr. 7, 1263–1269.PubMedGoogle Scholar
  23. 23.
    Liu R., Paxton W. A., Choe S., Ceradini D., Martin S. R., Horuk R., et al. (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377.PubMedCrossRefGoogle Scholar
  24. 24.
    Dean M., Carrington M., Winkler C., Huttley G. A., Smith M. W., Allikmets R., et al. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856–1862.PubMedCrossRefGoogle Scholar
  25. 25.
    Samson M., Libert F., Doranz B. J., Rucker J., Liesnard C., Farber C. M., et al. (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725.PubMedCrossRefGoogle Scholar
  26. 26.
    Winkler C., Modi W., Smith M. W., Nelson G. W., Wu X., Carrington M., et al. (1998) Genetic Restriction of AIDS Pathogenesis by an SDF-1 Chemokine Gene Variant. Science 279, 389–393.PubMedCrossRefGoogle Scholar
  27. 27.
    Simmons G., Clapham P. R., Picard L., Offord R. E., Rosenkilde M. M., Schwartz T. W., et al. (1997) Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276, 276–279.PubMedCrossRefGoogle Scholar
  28. 28.
    Mack M., Luckow B., Nelson P. J., Cihak J., Simmons G., Clapham P. R., et al. (1998) Aminooxypentane-RANTES induces CCR5 internalization but inhibts recycling: A novel inhibitory mechanism of HIV infectivity. J. Exp. Med. 187, 1215–1224.PubMedCrossRefGoogle Scholar
  29. 29.
    Connor R. I., Paxton W. A., Sheridan K. E., and Koup R. A. (1996) Macrophages and CD4+ T lymphocytes from two multiply exposed, uninfected individuals resist infection with primary non-syncytium-inducing isolates of human immunodeficiency virus type 1. J. Virol. 70, 8758–8764.PubMedGoogle Scholar
  30. 30.
    Oravecz T., Pall M., Wang J., Roderiquez G., Ditto M., and Norcross M. A. (1997) Regulation of anti-HIV-1 activity of RANTES by heparan sulfate proteoglycans. J. Immunol. 159, 4587–4592.PubMedGoogle Scholar
  31. 31.
    Doranz B. J., Grovit Ferbas K., Sharron M. P., Mao S. H., Goetz M. B., Daar E. S., et al. (1997) A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med. 186, 1395–1400.PubMedCrossRefGoogle Scholar
  32. 32.
    Donzella G. A., Schols D., Lin S. W., Este J. A., Nagashima K. A., Maddon P. J., et al. (1998) AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat. Med. 4, 72–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Schols D., Este J. A., Henson G., and De Clercq E. (1997) Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Res. 35, 147–156.PubMedCrossRefGoogle Scholar
  34. 34.
    Murakami T., Nakajima T., Koyanagi Y., Tachibana K., Fujii N., Tamamura H., et al. (1997) A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J. Exp. Med. 186, 1389–1393.PubMedCrossRefGoogle Scholar
  35. 35.
    Bleul C. C., Wu L., Hoxie J. A., Springer T. A., and Mackay C. R. (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl. Acad. Sci. USA 94, 1925–1930.PubMedCrossRefGoogle Scholar
  36. 36.
    Sallusto F., Mackay C. R., and Lanzavecchia A. (1997) Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277, 2005–2007.PubMedCrossRefGoogle Scholar
  37. 37.
    He J., Chen Y., Farzan M., Choe H., Ohagen A., Gartner S., et al. (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385, 645–649.PubMedCrossRefGoogle Scholar
  38. 38.
    Kledal T. N., Rosenkilde M. M., Coulin F., Simmons G., Johnsen A. H., Alouani S., et al. (1997) A broad-spectrum chemokine antagonist encoded by Kaposi§ sarcoma-associated herpesvirus. Science 277, 1656–1659.PubMedCrossRefGoogle Scholar
  39. 39.
    Boshoff C., Endo Y., Collins P. D., Takeuchi Y., Reeves J. D., Schweickart V. L., et al. (1997) Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 278, 290–294.PubMedCrossRefGoogle Scholar
  40. 40.
    Tersmette M., Koot M., De Goede R. E. Y., Kootstra N., and Schuitemaker H. (1995) Isolation and biological characterization of primary HIV-1 isolates, in HIV: A Practical Approach (Karn J., ed.), vol. 1, Oxford University Press Oxford, UK, pp. 47–61.Google Scholar
  41. 41.
    Pal R., Garzino Demo A., Markham P. D., Burns J., Brown M., Gallo R. C., and DeVico A. L. (1997) Inhibition of HIV-1 infection by the beta-chemokine MDC. Science 278, 695–698.PubMedCrossRefGoogle Scholar
  42. 42.
    Kimpton J. and Emerman M. (1992) Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J. Virol. 66, 2232–2239.PubMedGoogle Scholar
  43. 43.
    Bron R., Klasse P. J., Wilkinson D., Clapham P. R., Pelchen Matthews A., Power C., et al. (1997) Promiscuous use of CC and CXC chemokine receptors in cell-to-cell fusion mediated by a human immunodeficiency virus type 2 envelope protein. J. Virol. 71, 8405–8415.PubMedGoogle Scholar
  44. 44.
    Moore J. P., McKeating J. A., Weiss R. A., and Sattentau Q. J. (1990) Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250, 1139–1142.PubMedCrossRefGoogle Scholar
  45. 45.
    Collins M., Montaner L. J., Herbein G., and Gordon S. (1995) HIV infection of macrophages, in: HIV: A Practical Approach (Karn J., ed.), vol. 1, Oxford University Press Oxford, UK, pp. 63–76.Google Scholar
  46. 46.
    Hinkula J., Rosen J., Sundqvist V. A., Stigbrand T., and Wahren B. (1990) Epitope mapping of the HIV-1 gag region with monoclonal antibodies. Mol. Immunol. 27, 395–403.PubMedCrossRefGoogle Scholar
  47. 47.
    McKnight A., Clapham P. R., and Schulz T. F. (1995) Detection of HIV entry into cells, in: HIV: A Practical Approach (Karn J., ed.), vol. 1, Oxford University Press Oxford, UK, pp. 129–141.Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Jacqueline D. Reeves
    • 1
  • Graham Simmons
    • 1
  1. 1.Department of Molecular PathologyWindeyer Institute of Medical Sciences, Royal Free and University College Medical School University College LondonLondonUK

Personalised recommendations