Skip to main content

Analysis of Modified Oligonucleotides with Capillary Gel Electrophoresis

  • Protocol
  • 629 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 162))

Abstract

Short segments of DNA, which have been synthesized chemically, are commonly known as synthetic oligonucleotides (ODNs). The length of the ODNs typically utilized in the lab varies but is on average between five and forty nucleotides. Chemical modifications may be selectively placed at various locations within the molecule including the backbone, the heterocyclic base, or the sugar moiety (1,2). For the work discussed in this chapter, chemical alterations were placed in three locations: the backbone, the 3’-bridging position between the backbone and the sugar moiety, and at the 5’ end.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Matteucci M. (1996) Structural modifications toward improved antisense oligonucleotides. Perspectives Drug Discovery Design 4, 1–16.

    Article  CAS  Google Scholar 

  2. Uhlmann E. and Peyman A. (1990) Antisense oligonucleotides: A new therapeutic principle. Chem. Rev. 90, 544–584.

    Article  Google Scholar 

  3. Eckstein F. (1985) Nucleoside phosphorothioates. Ann. Rev. Biochem. 54, 367–402.

    Article  PubMed  CAS  Google Scholar 

  4. Eckstein F. (1983) Phosphorothioate analogues of nucleotides-tools for the investigation of biochemical processes. Angew. Chem. 6, 423–439.

    Google Scholar 

  5. De Clerq E., Eckstein F., Sternbach H., and Merigan C. (1970) The antiviral activity of thiophosphate-substituted polyribonucleotides in vitro and in vivo. Virology 42, 421–428.

    Article  Google Scholar 

  6. Altmann K. H., Fabbro D., Dean N. M., Geiger T., Monia B. P., Muller M., and Nicklin P. (1996) Second generation antisense oligonucleotides: Structure-activity relationships and the design of improved signal-transduction inhibitors. Biochem. Soc. Trans. 24, 630–637.

    PubMed  CAS  Google Scholar 

  7. Agrawal S., Jiang Z., Zhao Q., Shaw P., Cai Q., Roskey A., Channavajjala L., Saxinger C., and Zhang R. (1997) Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: In vitro and in vivo studies. Proc. Natl. Acad. Sci. USA 94, 2620–2625.

    Article  PubMed  CAS  Google Scholar 

  8. Heidenreich O., Gryaznov S., and Nerenberg M. (1997) RNase H-independent antisense activity of oligonucleotide N3′ → P5′ phosphoramidates. Nucleic Acids Res. 25, 776–780.

    Article  PubMed  CAS  Google Scholar 

  9. Giles R. V. and Tidd D.M. (1992) Enhanced RNase H activity with methylphosphodiester/phosphodiester chimeric antisense oligonucleotides. Anti-Cancer Drug Design 7, 37–48.

    PubMed  CAS  Google Scholar 

  10. Hermanson G. T. (1996) Tags and probes, in Bioconjugate Techniques, Academic Press San Diego, pp. 297–416.

    Chapter  Google Scholar 

  11. Murakami A., Nakaura M., Nakatsuji Y., Nagahara S., Tran-Cong Q., and Makino K. (1991) Fluorescent-labeled oligonucleotide probes: detection of hybrid formation in solution by fluorescence polarization spectroscopy. Nucleic Acids Res. 19, 4097–4102.

    Article  PubMed  CAS  Google Scholar 

  12. Landgraf A., Reckmann B., and Pingoud A. (1991) Quantitative analysis of polymerase chain reaction (PCR) products using primers labeled with biotin and a fluorescent dye. Anal. Biochem. 193, 231–235.

    Article  PubMed  CAS  Google Scholar 

  13. Zamecnik P. C. and Stephenson M. L. (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligonucleotide. Proc. Natl. Acad. Sci. USA 75, 280–284.

    Article  PubMed  CAS  Google Scholar 

  14. Bonham M. A., Brown S., Boyd A. L., Brown P. H., Bruckenstein D. A., Hanvey J. C., et al. (1995) An assessment of the antisense properties of RNase H-competent and stericblocking oligomers. Nucleic Acids Res. 23, 1197–1203.

    Article  PubMed  CAS  Google Scholar 

  15. Furdon P. J., Dominski Z., and Kole R. (1989) RNase H cleavage of RNA hybridized to oligonucleotides containing methylphosphonates, phosphorothioate and phosphodiester bonds. Nucleic Acids Res. 17, 9193–9204.

    Article  PubMed  CAS  Google Scholar 

  16. Brown D. A., Kang S., Gryaznov S. M., DeDionisio L., Heidenreich O., Sullivan S., Xu X., and Nerenberg M. I. (1994) Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J. Biol. Chem. 269, 26,801–26,805.

    PubMed  CAS  Google Scholar 

  17. Beltinger C., Saragovi H. U., Smith R. M., LeSauteur L., Shah N., DeDionisio L., Christensen L., Raible A., Jarett L., and Gerwitz A. M. (1995) Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J. Clin. Invest. 95, 1814–1823.

    Article  PubMed  CAS  Google Scholar 

  18. Bannwarth W. (1988) Solid-phase synthesis of oligonucleotides containing phosphoramidate internucleotide linkages and their specific chemical cleavage. Helvetica Chimica Acta 71, 1517–1527.

    Article  CAS  Google Scholar 

  19. Gryaznov S. M. and Letsinger R. L. (1992) Synthesis and properties of oligonucleotides containing aminodeoxythymidine units. Nucleic Acids Res. 20, 3403–3409.

    Article  PubMed  CAS  Google Scholar 

  20. Mag M., Schmidt R., and Engels J. W. (1992) Synthesis and selective cleavage of an oligonucleotide containing a bridged non-chiral internucleotide 3′-phosphoramidate linkage. Tetrahedron Lett. 48, 7319–7322.

    Article  Google Scholar 

  21. Gryaznov S. M., Lloyd D. H., Chen J., Schultz R. G., DeDionisio L. A., Ratmeyer L., and Wilson W. D. (1995) Oligonucleotide N3′ → P5′ phosphoramidates. Proc. Natl. Acad. Sci. USA 92, 5798–5802.

    Article  PubMed  CAS  Google Scholar 

  22. DeDionisio L. and Gryaznov S. M. (1995) Analysis of a ribonuclease H digestion of N3′ → P5′ phosphoramidates-RNA duplexes by capillary gel electrophoresis. J. Chromatogr. B 669, 125–131.

    Article  CAS  Google Scholar 

  23. Hawley P., Nelson J. S., Fearon K. L., Zon G., and Gibson I. (1999) Comparison of binding of N3′ → P5′ phosphoramidate and phosphorothioate oligonucleotides to cell surface proteins of cultured cells. Antisense Nucleic Acid Drug Dev. 9, 61–69.

    PubMed  CAS  Google Scholar 

  24. Rigl C. T., Lloyd D. H., Tsou D. S., Gryaznov S. G., and Wilson W. D. (1997) Structural RNA mimetics:: N3′ → P5′ phosphoramidate DNA analogs of HIV−1 RRE and TAR helices that bind specifically to rev and tat-related peptides. Biochemistry 36, 650–659.

    Article  PubMed  CAS  Google Scholar 

  25. McCurdy S. N., Nelson J. S., Hirschbein B. L., and Fearon K. L. (1997) An improved method for the synthesis of N3′ → P5′ phosphoramidate oligonucleotides. Tetrahedron Letts. 38, 207–210.

    Article  CAS  Google Scholar 

  26. Nelson J. S., Fearon K. L., Nguyen M. Q., McCurdy S. N., Frediani J. E., Foy M. F., and Hirschbein B. L. (1997) N3′ → P5′ oligodeoxyribonucleotide phosphoramidates: a new method of synthesis based on a phosphoramidite amine-exchange reaction. J. Org. Chem 62, 7278–7287.

    Article  PubMed  CAS  Google Scholar 

  27. Fearon K. L., Nelson J. S., Hirschbein B. L., Foy M. F., Nguyen M. Q., Okruszek A., McCurdy S. N., Frediani J. E., DeDionisio L. A., Raible A. M., and Boyd V. (1998) An improved synthesis of oligonucleotide N3′ → P5′ phosphoramidates and their chimera using hindered phosphoramidite monomers and a novel handle for reverse phase purification. Nucleic Acids Res. 26, 3813–3824.

    Article  PubMed  CAS  Google Scholar 

  28. Somers V., Moerkerk P., Murtagh J., and Thunnissen F. (1994) A rapid, reliable method for detection of known point mutations: Point-EXACCT. Nucleic Acids Res. 22, 4840–4841.

    Article  PubMed  CAS  Google Scholar 

  29. DeDionisio L. A. and Lloyd D. H. (1996) Capillary gel electrophoresis and antisense therapeutics: Analysis of DNA analogs. J. Chromatogr. A 735, 191–208.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen A. S., Vilenchik M., Dudley J. L., Gembroys M. W., and Bourque A. J. (1993) High-performance liquid chromatography and capillary gel electrophoresis as applied to antisense DNA. J. Chromatogr. 638, 293–301.

    Article  CAS  Google Scholar 

  31. Fearon K. L., Stults J. T., Bergot B. J., Christensen L. M., and Raible A. M. (1995) Investigation of the ‘n-1’ impurity in phosphorothioate oligodeoxynucleotides synthesized by the solid-phase β-cyanoethyl phosphoramidite method using stepwise sulfurization. Nucleic Acids Res. 23, 2754–2761.

    Article  PubMed  CAS  Google Scholar 

  32. Wilk A. and Stec W. J. (1995) Analysis of oligo(deoxynucleoside phosphorothioate)s and their diastereomeric composition. Nucleic Acid Res. 23, 530–534.

    Article  PubMed  CAS  Google Scholar 

  33. Srivatsa G. S., Batt M., Schuette J., Carlson R. H., Fitchett J., Lee C., and Cole P. L. (1994) Quantitative capillary gel electrophoresis assay of phosphorothioate oligonucleotides in pharmaceutical formulations. J. Chromatogr. A 680, 469–477.

    Article  PubMed  CAS  Google Scholar 

  34. DeDionisio L. A., Raible A. M., and Nelson J. S. (1998) Analysis of an oligonucleotide N3′ → P5′ phosphoramidate/phosphorothioate chimera with capillary gel electrophoresis. Electrophoresis 19, 2935–2938.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

DeDionisio, L.A. (2001). Analysis of Modified Oligonucleotides with Capillary Gel Electrophoresis. In: Mitchelson, K.R., Cheng, J. (eds) Capillary Electrophoresis of Nucleic Acids. Methods in Molecular Biology, vol 162. Humana Press. https://doi.org/10.1385/1-59259-055-1:353

Download citation

  • DOI: https://doi.org/10.1385/1-59259-055-1:353

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-779-3

  • Online ISBN: 978-1-59259-055-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics